Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T20:44:35.007Z Has data issue: false hasContentIssue false

Eye dominance and response latency in area V1 of the monkey

Published online by Cambridge University Press:  04 October 2007

MARIA C. ROMERO
Affiliation:
Department of Physiology, School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
ADRIAN F. CASTRO
Affiliation:
Department of Physiology, School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
MARIA A. BERMUDEZ
Affiliation:
Department of Physiology, School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
ROGELIO PEREZ
Affiliation:
Department of Physiology, School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela, Spain Service of Ophthalmology, Complejo Hospitalario de Monforte de Lemos, Santiago de Compostela, Spain
FRANCISCO GONZALEZ
Affiliation:
Department of Physiology, School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela, Spain Service of Ophthalmology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain

Abstract

We measured the latency of 35 cells from V1 in two rhesus monkeys, to dynamic random dot stimuli monocular and binocularly presented. Mean latencies after non-dominant eye stimulation (97.9 ms) were longer than those for dominant eye (78.2 ms) and binocular (70.7 ms) stimulation. Differences between latencies for dominant eye and binocular stimulation were not statistically significant. For dominant eye, there was a significant statistical correlation between dominance strength and latency (R = −0.36; p = 0.03). We failed to find significant statistical differences between latencies for cells with temporal and nasal dominant receptive-field. We conclude that, in V1, the response latency is largely determined by the dominant eye, whereas interocular interactions do not seem to play a relevant role regarding response latency.

Type
BRIEF COMMUNICATION
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azzopardi, P., Fallah, M., Gross, C.G. & Rodman, H.R. (2003). Response latencies of neurons in visual areas MT and MST of monkeys with striate cortex lesions. Neurophyschologia 41, 17381756.Google Scholar
Bair, W., Cavanaugh, J.R., Smith, M.A. & Movshon, J.A. (2002). The timing of response onset and offset in macaque visual neurons. The Journal of Neuroscience 22, 31893205.Google Scholar
Bisley, J.W., Krishna, B.S. & Goldberg, M.E. (2004). A rapid and precise on-response in posterior parietal cortex. Journal of Neuroscience 24, 18331838.Google Scholar
Durand, J.B., Zhu, S., Celebrini, S. & Trotter, Y. (2002). Neurons in parafoveal areas V1 and V2 encode vertical and horizontal disparities. Journal of Neurophysiology 88, 28742879.Google Scholar
Felleman, D.J. & Van Essen, D.C. (1991). Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex 1, 147.Google Scholar
Froemke, R.C., Poo, M.M. & Dan, Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434, 221225.Google Scholar
Gawne, T.J., Kjaer, T.W. & Richmond, B.J. (1996). Latency: Another potential code for feature binding in striate cortex. Journal of Neurophysiology 76, 13561360.Google Scholar
Gonzalez, F., Castro, A.F., Romero, M.C., Bermudez, M.A. & Perez, R. (2006). Temporal characteristics of visual receptive fields in primary visual cortex and medial superior temporal cortex areas. Neuroreport 17, 565569.Google Scholar
Gonzalez, F. & Krause, F. (1994). Generation of dynamic random-element stereograms in real time with a system based on a personal computer. Medical & Biological Engineering and Computing 32, 373376.Google Scholar
Gonzalez, F., Krause, F., Perez, R., Alonso, J.M. & Acuña, C. (1993). Binocular matching in monkey's visual cortex: Single cell responses to correlated and uncorrelated dynamic random dot stereograms. Neuroscience 52, 933939.Google Scholar
Gonzalez, F., Perez, R., Justo, M.S. & Bermudez, M.A. (2001). Response latencies to visual stimulation and disparity sensitivity in single cells of the awake Macaca mulata visual cortex. Neuroscience Letters 299, 4144.Google Scholar
Hilgetag, C.C., O'Neill, M.A. & Young, M.P. (1996). Indeterminate organization of the visual system. Science 271, 776777.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1959). Receptive fields of single neurons in the cat's visual cortex. The Journal of Physiology 148, 574591.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology 160, 106154.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1979). Brain mechanisms of vision. Scientific American 241, 150162.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1974). Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Research 79, 273279.Google Scholar
Knierim, J.J. & Van Essen, D.C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology 67, 961980.Google Scholar
Maunsell, J.H., Ghose, G.M., Assad, J.A., McAdams, C.J., Boudreau, C.E. & Noerager, B.D. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience 16, 114.Google Scholar
Maunsell, J.H. & Gibson, J.R. (1992). Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology 68, 13321344.Google Scholar
Noesselt, T., Hillyard, S.A., Woldorff, M.G., Schoenfeld, A., Hagner, T., Jäncke, L., Tempelmann, C., Hinrichs, H. & Heinze, H.J. (2002). Delayed striate cortical activation during spatial attention. Neuron 35, 575587.Google Scholar
Nowak, L.G. & Bullier, J. (1997). The timing of information transfer in the visual system. In Cerebral Cortex and extrastriate cortex in primates, ed. Rockland, K., Kaas, J. & Peters, A., pp. 205241. New York: Plenum.
Nowak, L.G., Munk, M.H., Girard, P. & Bullier, J. (1995). Visual latencies in areas V1 and V2 of the macaque monkey. Visual Neuroscience 12, 371384.Google Scholar
Prince, S.J., Cumming, B.G. & Parker, A.J. (2002). Range and mechanism of encoding of horizontal disparity in macaque V1. Journal of Neurophysiology 87, 209221.Google Scholar
Raiguel, S.E., Lagae, L., Gulyas, B. & Orban, G.A. (1989). Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Research 493, 155159.Google Scholar
Raiguel, S.E., Xiao, D.K., Marcar, V.L. & Orban, G.A. (1999). Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters. Journal of Neurophysiology 82, 19441956.Google Scholar
Reich, D.S., Mechler, F. & Victor, J.D. (2001). Temporal coding of contrast in primary visual cortex: When, what and why. Journal of Neurophysiology 85, 10391050.Google Scholar
Schmolesky, M.T., Wang, Y., Hanes, D.P., Thompson, K.G., Leutgeb, S., Schall, J.D. & Leventhal, A.G. (1998). Signal timing across the macaque visual system. Journal of Neurophysiology 79, 32723278.Google Scholar
Supèr, H., Spekreijse, H. & Lamme, V.A.F. (2001). Two distinct mode of sensory processing observed in monkey primary visual cortex (V1). Nature Neuroscience 4, 304310.Google Scholar
Van Essen, D.C., Anderson, C.H. & Felleman, D.J. (1992). Information processing in the primate visual system: An integrated systems perspective. Science 255, 419423.Google Scholar