Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T00:30:30.214Z Has data issue: false hasContentIssue false

The effects of luminance and chromatic background flicker on the human visual evoked potential

Published online by Cambridge University Press:  02 June 2009

Mitchell Brigell
Affiliation:
Department of Neurology, Loyola University Chicago, Maywood
Antonio Strafella
Affiliation:
Department of Neurology, Loyola University Chicago, Maywood
Lucio Parmeggiani
Affiliation:
Department of Neurology, Loyola University Chicago, Maywood
Paul J. Demarco Jr
Affiliation:
Department of Neurology, Loyola University Chicago, Maywood Department of Neurology, Hines VA Hospital
Gastone G. Celesia
Affiliation:
Department of Neurology, Loyola University Chicago, Maywood Department of Neurology, Hines VA Hospital

Abstract

Previous studies report that background luminance flicker, which is asynchronous with signal averaging, reduces the amplitude and increases the latency of the pattern-onset visual evoked potential (VEP). This effect has been attributed to saturation of the magnocellular (m-) pathway by the flicker stimulus. In the current study, we evaluate this hypothesis and further characterize this effect. We found that flicker had similar effects on the pattern-onset and pattern-reversal VEP, suggesting that the reversal and onset responses have similar generators. Chromatic flicker decreased latency of the chromatic VEP whereas luminance flicker increased peak latency to luminance targets. This result indicates that luminance flicker saturates a rapidly conducting m-pathway whereas chromatic flicker saturates a more slowly conducting parvocellular (p-) pathway. Finally, evoked potentials to chromatic and luminance stimuli were recorded from 34 electrodes over the scalp in the presence of static and asynchronously modulated backgrounds. An equivalent dipole model was used to assess occipital, parietal, and temporal lobe components of the surface response topography. Results showed that chromatic flicker reduced activity to a greater extent in the ventral visual pathway whereas luminance flicker reduced activity to a greater extent in the dorsal visual pathway to parietal lobe. We conclude that the VEP to isoluminant color and luminance stimuli contains both m- and p-pathway components. Asynchronous flicker can be used to selectively reduce the contribution of these pathways to the surface recorded VEP. Our results provide evidence of parallel pathways in the human visual system, with a dorsal luminance channel projecting predominantly to the posterior parietal lobe and a ventral color channel projecting predominantly to inferior temporal lobe.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, T., Begleiter, A., McCarthy, G., Roessler, E., Nobre, A.C. & Spencer, D.D. (1993). Electrophysiological studies of color processing in human visual cortex. Electroencephalography and Clinical Neurophysiology 88, 343355.CrossRefGoogle ScholarPubMed
Baro, J.A. & Lehmkuhle, S. (1990). The effects of a luminance-modulated background on human grating-evoked cortical potentials. Clinical Visual Sciences 5, 265270.Google Scholar
Belliveau, J.W., Kennedy, D.N. Jr., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R.M., Cohen, M.S., Vevea, J.M., Brady, T.J. & Rosen, B.R. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254, 716719.CrossRefGoogle ScholarPubMed
Berninger, T.A., Arden, G.B., Hogg, C.R. & Frumkes, T. (1989). Separable evoked retinal and cortical potentials from each major visual pathway: Preliminary results. British Journal of Ophthalmology 73, 502511.CrossRefGoogle ScholarPubMed
Bowen, R.W. (1981). Latencies for chromatic and achromatic visual mechanisms. Vision Research 21, 14571466.CrossRefGoogle ScholarPubMed
Brigell, M., Parmeggiani, L., Owczarek, K. & Celesia, G.G. (1992). Development of a strategy for equivalent dipole analysis of interictal spike and wave activity. Electroencephalography and Clinical Neurophysiology 86, 65P.Google Scholar
Brigell, M., Rubboli, G. & Celesia, G.G. (1993). Identification of the hemisphere activated by hemifield visual stimulation using a single equivalent dipole model. Electroencephalography and Clinical Neurophysiology 87, 291299.CrossRefGoogle ScholarPubMed
Celesia, G.G. (1986). Correlation between visual evoked potentials and visualization of regions of cortical activation by positron emission tomography. In Evoked Potentials, ed. Bodis-Wollner, I. & Cracco, R., pp. 320329. New York: Liss.Google ScholarPubMed
Celesia, G.G. & Demarco, P.J. Jr. (1994). Anatomy and physiology of the visual system. Journal of Clinical Neurophysiology 11, 482492.CrossRefGoogle ScholarPubMed
Corbetta, M., Miezin, F.M., Dobmeyer, S., Shulman, G.L. & Petersen, S.E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience 11, 23832402.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1993). The mosaic of midget ganglion cells in the human retina. Journal of Neuroscience 13, 53345355.CrossRefGoogle ScholarPubMed
Dacey, D.M. & Brace, S. (1992). A coupled network for parasol but not midget ganglion cells in the primate retina. Visual Neuroscience 9, 279290.CrossRefGoogle Scholar
Damasio, A.R., Damasio, H. & Van Hoesen, G.W. (1982). Prosopagnosia: Anatomic basis and behavioral mechanisms. Neurology 32, 331341.CrossRefGoogle ScholarPubMed
Damasio, A., Yamada, T., Damasio, H., Corbett, J. & McKee, J. (1980). Central achromatopsia: Behavioral, anatomic, and physiologic aspects. Neurology 30, 10641071.CrossRefGoogle ScholarPubMed
Derrington, A.M. & Lennie, P. (1984). Spatial and temporal contrast sensitivity of neurones in lateral geniculate nucleus of macaque. Journal of Physiology (London) 357, 241265.CrossRefGoogle ScholarPubMed
Desimone, R. & Schein, S.J. (1987). Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form. Journal of Neurophysiology 57, 835868.CrossRefGoogle ScholarPubMed
Desimone, R., Schein, S.J., Moran, J. & Ungerleider, L.G. (1985). Contour, color and shape analysis beyond the striate cortex. Vision Research 25, 441452.CrossRefGoogle ScholarPubMed
DeYoe, E.A. & Van Essen, D.C. (1985). Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature 317, 5861.CrossRefGoogle ScholarPubMed
DeYoe, E.A. & Van Essen, D.C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience 11, 219226.CrossRefGoogle ScholarPubMed
Dubner, R. & Zeki, S.M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research 35, 528532.CrossRefGoogle Scholar
Estevez, O. & Spekreijse, H. (1974). Relationship between pattern appearance-disappearance and pattern reversal responses. Experimental Brain Research 19, 233238.CrossRefGoogle ScholarPubMed
Ferrera, V.P., Nealey, T.A. & Maunsell, J.H. (1994). Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. Journal of Neuroscience 14, 20802088.CrossRefGoogle ScholarPubMed
Green, M. (1983). Visual masking by flickering surrounds. Vision Research 23, 735744.CrossRefGoogle ScholarPubMed
Hendrickson, A.E., Wilson, J.R. & Ogren, M.P. (1978). The neuroanatomic organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. Journal of Comparative Neurology 182, 123136.CrossRefGoogle ScholarPubMed
Jasper, H.H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology 10, 371375.Google Scholar
Kaplan, E. & Shapley, R.M. (1986). The primate retina contains two types of ganglion cells with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the U.S.A. 83, 27552757.CrossRefGoogle ScholarPubMed
Korth, M. & Rix, R. (1988). Luminance-contrast evoked responses and color-contrast evoked responses in the human electroretinogram. Vision Research 28, 4148.CrossRefGoogle ScholarPubMed
Kruger, J. (1977). The shift effect in the lateral geniculate body of the rhesus monkey. Experimental Brain Research 29, 387392.Google ScholarPubMed
Kulikowski, J.J. (1977). Separation of occipital potentials related to the detection of movement and pattern. In Visual Evoked Potentials in Man: New Developments, ed. Desmedt, J.E., pp. 184196. Oxford, England: Clarendon Press.Google Scholar
Kuyk, T. & Fuhr, P.S. (1993). The effects of peripheral flicker on foveal spectral sensitivity. Vision Research, 33, 627633.CrossRefGoogle ScholarPubMed
Lee, B.B., Martin, P.R. & Valberg, A. (1989). Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. Journal of Physiology (London) 414, 223243.CrossRefGoogle ScholarPubMed
Lee, B.B., Pokorny, J., Smith, V.C., Martin, P.R. & Valberg, A. (1990). Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. Journal of the Optical Society of America A—Optics & Image Science 7, 22232236.CrossRefGoogle ScholarPubMed
Lehmann, D. & Skrandies, W. (1984). Spatial analysis of evoked potentials in man—A review. Progress in Neurobiology 23, 227250.CrossRefGoogle ScholarPubMed
Levine, D.N. (1982). Visual Agnosia in monkey and in man. In Analysis of Visual Behavior, ed. Ingle, D.J., Goodale, M.A. & Mansfield, R.J.W., pp. 629670. Cambridge Massachusetts: MIT Press.Google Scholar
Levitt, J.B., Kiper, D.C. & Movshon, J.A. (1994). Receptive fields and functional architecture of macaque V2. Journal of Neurophysiology 71, 25172542.CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740749.CrossRefGoogle ScholarPubMed
Logothetis, N.K., Schiller, P.H., Charles, E.R. & Hurlbert, A.C. (1990). Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance. Science 247, 214217.CrossRefGoogle ScholarPubMed
Lueck, C.J., Zeki, S., Friston, K.J., Deiber, M.P., Cope, P., Cunningham, V.J., Lammertsma, A.A., Kennard, C. & Frackowiak, R.S. (1989). The colour centre in the cerebral cortex of man. Nature 340, 386389.CrossRefGoogle ScholarPubMed
Maier, J., Dagnelie, G., Spekreijse, H. & Van Dijk, B.W. (1987). Principal components analysis for source localization of VEPs in man. Vision Research 27, 165177.CrossRefGoogle ScholarPubMed
Marroco, R.T. (1976). Sustained and transient cells in monkey lateral geniculate nucleus. Conduction velocities and response properties. Journal of Neurophysiology 39, 340353.CrossRefGoogle Scholar
Maunsell, J.H., Nealey, T.A. & Depriest, D.D. (1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. Journal of Neuroscience 10, 33233334.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. Journal of Neurophysiology 49, 11481167.CrossRefGoogle ScholarPubMed
Maunsell, J.H. & Gibson, J.R. (1992). Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology 68, 13321344.CrossRefGoogle ScholarPubMed
McIlwain, J.T. (1964). Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. Journal of Neurophysiology 27, 11541173.CrossRefGoogle ScholarPubMed
McIlwain, J.T. (1966). Some evidence concerning the physiological basis of the periphery effect in the cat's retina. Experimental Brain Research 1, 265276.CrossRefGoogle ScholarPubMed
Merigan, W.H. & Maunsell, J.H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience 16, 369402.CrossRefGoogle ScholarPubMed
Morrone, C., Porciatti, V., Fiorentini, A. & Burr, D.C. (1994). Pattern-reversal electroretinogram in response to chromatic stimuli.1. Humans. Visual Neuroscience 11, 861871.CrossRefGoogle Scholar
Murray, I.J. & Kulikowski, J.J. (1983). VEPs and contrast. Vision Research 11, 17411743.CrossRefGoogle Scholar
Nelson, J.I. & Seiple, W.H. (1992). Human VEP contrast modulation sensitivity: Separation of magno- and parvocellular components. Electroencephalography and Clinical Neurophysiology 84, 112.CrossRefGoogle ScholarPubMed
Nissen, M.J. & Pokorny, J. (1977). Wavelength effects on simple reaction time. Perception and Psychophysics 22, 457462.CrossRefGoogle Scholar
Ossenblok, P. & Spekreijse, H. (1991). The extrastriate generators of the EP to checkerboard onset. A source localization approach. Electroencephalography and Clinical Neurophysiology 80, 181193.CrossRefGoogle ScholarPubMed
Paulson, H.L., Galetta, S.L., Grossman, M. & Alavi, A. (1994). Hemiachromatopsia of unilateral occipitotemporal infarcts American Journal of Ophthalmology 118, 518523.Google Scholar
Plant, G.T., Laxer, K.D., Barbaro, N.M., Schiffman, J.S. & Nakayama, K. (1993). Impaired visual motion perception in the contralateral hemifield following unilateral posterior cerebral lesions in humans. Brain 116, 13031335.CrossRefGoogle ScholarPubMed
Probst, T., Plendl, H., Paulus, W., Wist, E.R. & Scherg, M. (1993). Identification of the visual motion area (area V5) in the human brain by dipole source analysis. Experimental Brain Research 93, 345351.CrossRefGoogle ScholarPubMed
Richer, F., Martinez, M., Cohen, H. & Saint-Hilaire, J.M. (1991). Visual motion perception from stimulation of the human medial parieto-occipital cortex. Experimental Brain Research 87, 649652.CrossRefGoogle ScholarPubMed
Rizzo, M., Nawrot, M., Blake, R. & Damasio, A. (1992). A human visual disorder resembling area V4 dysfunction in the monkey. Neurology 42, 11751180.CrossRefGoogle ScholarPubMed
Rizzo, M., Smith, V., Pokorny, J. & Damasio, A.R. (1993). Color perception profiles in central achromatopsia. Neurology 43, 9951001.CrossRefGoogle ScholarPubMed
Scherg, M. & Von Cramon, D. (1986). Evoked dipole source potentials of the human auditory cortex. Electroencephalography and Clinical Neurophysiology 65, 344360.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Colby, C.L. (1983). The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast. Vision Research 23, 16311641.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Malpeli, J.G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology 41, 788797.CrossRefGoogle ScholarPubMed
Schroeder, C.E., Tenke, C.E., Givre, S.J., Arezzo, J.C. & Vaughn, H.G. Jr. (1991). Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vision Research 31, 11431157.CrossRefGoogle Scholar
Schwartz, S.H. (1992). Reaction time distributions and their relationship to the transient/sustained nature of the neural discharge. Vision Research 32, 20872092.CrossRefGoogle Scholar
Sclar, G., Maunsell, J.H.R. & Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research 30, 110.CrossRefGoogle ScholarPubMed
Shapley, R.M. & Victor, J.D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology (London) 285, 275298.CrossRefGoogle ScholarPubMed
Spekreijse, H., Dagnelie, G., Maier, J. & Regan, D. (1985). Flicker and movement constituents of the pattern reversal response. Vision Research 25, 12971304.CrossRefGoogle ScholarPubMed
Ueno, T., Pokorny, J. & Smith, V.C. (1985). Reaction times to chromatic stimuli. Vision Research 25, 16231627.CrossRefGoogle ScholarPubMed
Vaina, L.M., Lemay, M., Bienfang, D.C., Choi, A.Y. & Nakayama, K. (1990). Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study. Visual Neuroscience 5, 353369.CrossRefGoogle Scholar
Watson, J.D., Myers, R., Frackowiak, R.S., Hajnal, J.V., Woods, R.P., Mazziotta, J.C., Shipp, S. & Zeki, S. (1993). Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cerebral Cortex 3, 7994.CrossRefGoogle ScholarPubMed
Zeki, S. (1990). Parallelism and functional specialization in human visual cortex. Cold Spring Harbor Symposium on Quantitative Biology 55, 651661.CrossRefGoogle ScholarPubMed
Zeki, S. (1991). Cerebral akinetopsia (visual motion blindness). A review. Brain 114, 811824.CrossRefGoogle ScholarPubMed
Zeki, S., Watson, J.D., Lueck, C.J., Friston, K.J., Kennard, C. & Frackowiak, R.S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience 11, 641649.CrossRefGoogle ScholarPubMed
Zihl, J., Von Cramon, D., Mai, N. & Schmid, C. (1991). Disturbance of movement vision after bilateral posterior brain damage: Further evidence and follow up observations. Brain 114, 22352252.CrossRefGoogle ScholarPubMed