Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T22:16:03.316Z Has data issue: false hasContentIssue false

Differences between ipsilaterally and contralaterally evoked potentials in the visual wulst of the zebra finch

Published online by Cambridge University Press:  02 June 2009

Manfred Bredenkötter
Affiliation:
Lehrstuhl für Verhaltensphysiologie, Universität Bielefeld, Federal Republic of Germany
Hans-Joachim Bischof
Affiliation:
Lehrstuhl für Verhaltensphysiologie, Universität Bielefeld, Federal Republic of Germany

Abstract

The telencephalic target of the thalamofugal visual pathway in birds, the visual wulst, is part of the hyperstriatum accessorium/dorsale in the bird's brain. In this study, we tried to determine the exact location of the visually responsive area in the zebra finch by recording visually evoked potentials (VEPs) from different sites throughout the hyperstriatum and calculating current source densities (CSDs). In addition, we examined the influence of ipsilateral and contralateral stimuli on stimulus processing within this area, and tried to get insight into the neuronal machinery of the thalamofugal pathway by application of drugs such as tetrodotoxin (TTX) and picrotoxin.

About two-thirds of the hyperstriatum is responsive to contralateral stimuli but only a small portion responds to ipsilateral stimuli. Contralateral visual information arrives in the hyperstriatum dorsale (HD) and is processed further to the hyperstriatum accessorium (HA).

The small influence of ipsilaterally evoked potentials is not due to inhibition by the activity of the contralateral eye, as could be demonstrated previously for the ectostriatum. Instead, our results show that ipsilaterally evoked potentials are inhibited at least in part by a projection from the contralateral visual wulst.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bischof, H.J. (1981). A stereotaxic headholder for small birds. Brain Research Bulletin 7, 435436.CrossRefGoogle ScholarPubMed
Bischof, H.J. (1988). The visual field and visually guided behavior in the zebra finch. Journal of Comparative Physiology A 163, 329337.CrossRefGoogle Scholar
Bisti, S., Iosif, G. & Strata, P. (1971). Suppression of inhibition in the cerebellar cortex by picrotoxin and bicuculline. Brain Research 28, 591593.CrossRefGoogle ScholarPubMed
Bredenkötter, M. & Bischof, H.J. (1990). Ipsilaterally evoked responses in the zebra finch visual wulst are reduced during ontogeny. Brain Research 515, 343346.Google Scholar
Casini, G., Bingman, V.P. & Bagnoli, P. (1986). Connections of the pigeon dorsomedial forebrain studied with WGA-HRP and [3H]-proline. Journal of Comparative Neurology 245, 454470.CrossRefGoogle ScholarPubMed
Denton, C.J. (1981). Topography of the hyperstriatal visual projection area in the young chicken. Experimental Neurology 74, 482498.Google Scholar
Engelage, J. & Bischof, H.J. (1988). Enucleation enhances ipsilateral flash-evoked responses in the ectostriatum of the zebra finch (Taeniopygia guttata castanotis Gould). Experimental Brain Research 70, 7989.CrossRefGoogle ScholarPubMed
Engelage, J. & Bischof, H.J. (1989). Flash-evoked potentials in the ectostriatum of the zebra finch: a current-source-density analysis. Experimental Brain Research 74, 563572.CrossRefGoogle Scholar
Galindo, A. (1969). GABA-picrotoxin interaction in the mammalian nervous system. Brain Research 14, 763767.Google Scholar
Henke, H. (1983). The central part of the avian visual system. In Progress in Nonmammalian Brain Research, Vol. I, ed. Nistica, G. & Bolis, L., pp. 113158. Boca Raton, Florida: CRC Press.Google Scholar
Hunt, S.P. & Webster, K.E. (1972). Thalamo-hyperstriate interrelations in the pigeon. Brain Research 44, 647651.CrossRefGoogle ScholarPubMed
Karten, H.J., Hodos, W., Nauta, W.J.H. & Revzin, A.M. (1973). Neuronal connections of the “visual wulst” of the avian telencephalon. Experimental studies in the pigeon and owl. Journal of Comparative Neurology 150, 253278.Google Scholar
Mihailovic, J., Perisic, M., Bergonzi, R. & Meier, R.E. (1974). The dorsolateral thalamus as a relay in the retino-wulst pathway in pigeon. Experimental Brain Research 21, 229240.CrossRefGoogle ScholarPubMed
Mitzdorf, U. & Singer, W. (1977). Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. Journal of Neurophysiology 40, 12271244.CrossRefGoogle Scholar
Nixdorf, B.E. & Bischof, H.J. (1982). Afferent connections of the ectostriatum and visual wulst in the zebra finch — a HRP study. Brain Research 248, 917.Google Scholar
Parker, D.M. & Delius, J.D. (1972). Visual-evoked potentials in the forebrain of the pigeon. Experimental Brain Research 14, 198209.CrossRefGoogle ScholarPubMed
Perisic, M., Mihailovic, J. & Cuenod, M. (1971). Electrophysiology of contralateral and ipsilateral visual projections to the wulst in pigeon (Columba livia). Journal of Neuroscience 2, 714.Google Scholar
Pettigrew, J.D. & Konishi, M. (1976). Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl. Science 193, 675678.CrossRefGoogle ScholarPubMed
Reiter, H.O., Waitzman, D.M. & Stryker, M.P. (1986). Cortical activity blockade prevents ocular-dominance plasticity in the kitten visual cortex. Experimental Brain Research 65, 182188.CrossRefGoogle ScholarPubMed
Stingelin, W. (1958). Vergleichend Morphologische Untersuchungen am Vorderhirn der Vögel auf Cytologischer und Cytoarchitektonischer Grundlage. Basel: Heltnig und Lichtenhahn.Google Scholar
Wilson, P. (1980). The organization of the visual hyperstriatum in the domestic chick, II: Receptive-field properties of single units. Brain Research 188, 333345.Google Scholar