Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T13:08:09.821Z Has data issue: false hasContentIssue false

Contrast sensitivity in relapsing–remitting multiple sclerosis assessed by sine-wave gratings and angular frequency stimuli

Published online by Cambridge University Press:  16 May 2014

JÁKINA G. VIEIRA-GUTEMBERG*
Affiliation:
Department of Neuropsychiatry and Behavioral Science, Universidade Federal de Pernambuco (UFPE), Recife–Pernambuco, Brazil
LIANA C. MENDES-SANTOS
Affiliation:
Department of Psychology, Pontíficie Universidade Católica (PUC), Rio de Janeiro (PUC-RIO), Brazil
MELYSSA K. CAVALCANTI-GALDINO
Affiliation:
Department of Psychology, Universidade Federal da Paraíba (UFPB), João Pessoa–Paraíba, Brazil
NATANAEL A. SANTOS
Affiliation:
Departamento de Psicologia Experimental, Universidade Federal da Paraíba (UFPB), João Pessoa–Paraíba, Brazil
MARIA LÚCIA DE BUSTAMANTE SIMAS
Affiliation:
Department of Neuropsychiatry and Behavioral Science, Universidade Federal de Pernambuco (UFPE), Recife–Pernambuco, Brazil
*
*Address correspondence to: Jákina Guimarães Vieira-Gutemberg, Av. Monsenhor Walfredo Leal n° 512, Bairro, Tambiá, João Pessoa–Paraíba, CEP 58020-540, Brazil. E-mail: jakinag.vieira@gmail.com

Abstract

Previous studies have shown that multiple sclerosis (MS) affects the visual system, mainly by reducing contrast sensitivity (CS), a function that can be assessed by measuring contrast sensitivity function (CSF). To this end, we measured both the CSF for sine-wave gratings and angular frequency stimuli with 20 participants aged between 21 and 44 years, of both genders, with normal or corrected to normal visual acuity. Of these 20 participants, there were 10 volunteers with clinically defined MS of the relapsing–remitting clinical form, with no history of optic neuritis (ON), as well as 10 healthy volunteers who served as the control group (CG). We used a forced-choice detection paradigm. The results showed reduced CS to both classes of stimuli. Differences were found for sine-wave gratings at spatial frequencies of 0.5, 1.25, and 2.5 cycles per degree (cpd) (P < 0.002) and for angular frequency stimuli of 4, 24, and 48 cycles/360° (P < 0.05). On the one hand, comparing the maxima of the respective CSFs, the CS to angular frequency stimuli (24 cycles/360°) was 1.61-fold higher than that of the CS to vertical sine-wave gratings (4.0 cpd) in the CG; for the MS group, these values were 1.55-fold higher. On the other hand, CS in the MS group attained only 75% for 24 cycles/360° and 78% for 4.0 cpd of the 100% CS estimates found for the CG at the peak frequencies. These findings suggest that MS affects the visual system, mostly at its maximum contrast sensitivities. Also, since angular frequencies and sine-wave gratings operate at distinct levels of contrast in the visual system, MS seems to affect CS at both high and low levels of contrast.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R.J. & Courage, M.L. (2002). Using a single test to measure human contrast sensitivity from early childhood to maturity. Vision Research 42, 12051210.Google Scholar
Balcer, L.J. & Frohman, E.M. (2010). Evaluating loss of visual function in multiple sclerosis as measured by low-contrast letter acuity. Neurology 74, 1623.CrossRefGoogle ScholarPubMed
Bendfeldt, K., Egger, H., Nichols, T.E., Loetscher, P., Denier, N. & Kuster, P. (2010). Effect of immunomodulatory medication on regional gray matter loss in relapsing–remitting multiple sclerosis - A longitudinal MRI study. Brain Research 1325, 174182.CrossRefGoogle ScholarPubMed
Campbell, F.W. (1983). Why do we measure contrast sensitivity? Behavioural Brain Research 10, 8797.CrossRefGoogle ScholarPubMed
Campbell, F.W. & Maffei, L. (1974). Contrast and spatial frequency. Sciences America 231, 106114.Google Scholar
Campbell, F.W. & Robson, J.G. (1968). Application of Fourier analysis to the visibility of gratings. Journal de Physiologie 197, 551566.CrossRefGoogle Scholar
Charil, A. & Filippi, M. (2007). Inflammatory demyelination and neurodegeneration in early multiple sclerosis. Journal of Neurology Sciences 259, 715.Google Scholar
Cohen, J.A. (2009). The future of multiple sclerosis treatment. Journal of Neurology Sciences 277, 5561.CrossRefGoogle ScholarPubMed
Cornsweet, T.N. (1970). Visual Perception. New York: Academic Press, 475.Google Scholar
Courtney, A.M., Lcsw-Acp, K.T., Bsn, G.R. & Frohman, L. (2009). Multiple sclerosis. Medical Clinics of North America 93, 451476.CrossRefGoogle ScholarPubMed
Díez-Ajenjo, M.A. & Capilla, P. (2010). Spatio-temporal contrast sensitivity in the cardinal directions of the colour space. Journal of Optometry 3, 219.Google Scholar
Fisher, J.B., Jacobs, D.A., Markowitz, C.E., Galetta, S.L., Volpe, N.J., Nano-Schiavi, M.L., Baier, M.L., Frohman, E.M., Winslow, H., Frohman, T.C., Calabresi, P.A., Maguire, M.G., Cutter, G.R. & Balcer, L.J. (2006). Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113, 324332.Google Scholar
Flanagan, P. & Markulev, C. (2005). Spatio-temporal selectivity of loss of colour and luminance contrast sensitivity with multiple sclerosis and optic neuritis. Ophthalmic and Physiological Optics 25, 2557.Google Scholar
Fusco, C., Guerini, F.R., Nocera, G., Ventrella, G., Caputo, D. & Valentino, M.A. (2010). KIRs and their HLA ligands in remitting-relapsing multiple sclerosis. Journal of Neuroimmunology 229, 232237.CrossRefGoogle ScholarPubMed
Gallant, J., Braun, J., Essen, D. (1993). Selectivity for polar, hyperbolic, and cartesian gratings in macaque visual cortex. Science 259, 100103.CrossRefGoogle ScholarPubMed
Glisson, C.C. & Galetta, S.L. (2009). Nonconventional optic nerve imaging in multiple sclerosis. Neuroimaging Clinics of North America 19, 7179.Google Scholar
Graves, J., Galetta, S.L., Palmer, J., Margolin, D.H., Rizzo, M., Bilbruck, J. & Balcer, L.J. (2013). Alemtuzumab improves contrast sensitivity in patients with relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal 4, 19.Google Scholar
Havrdova, E., Galetta, S., Stefoski, D. & Comi, G. (2010). Freedom from disease activity in multiple sclerosis. Neurology 74, 37.Google Scholar
Kelly, D.H. & Magnuski, H.S. (1975). Pattern detection and the two-dimensional Fourier transform: Circular targets. Vision Research 15, 911915.CrossRefGoogle ScholarPubMed
Kelly, D.H. (1960). Stimulus pattern for visual research. Journal of the Optical Society of America 50, 11151116.CrossRefGoogle ScholarPubMed
Kornek, B. & Lassmann, H. (2003). Neuropathology of multiple sclerosis – new concepts. Brain Research Bulletin 61, 321326.Google Scholar
Kurtzke, J.F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale. Neurology 33, 14441452.CrossRefGoogle ScholarPubMed
Leguire, L.E., Algaze, A., Kashou, N.H., Lewis, J., Rogers, G.L & Roberts, C. (2011). Relationship among fMRI, contrast sensitivity and visual acuity. Brain Research 1367, 162169.CrossRefGoogle ScholarPubMed
Logi, F., Pellegrinetti, A., Bonfiglio, L., Baglini, O., Siciliano, G., Lucide, A. & Sartucci, F. (2001). Effects of grating spatial orientation on visual evoked potentials and contrast sensitivity in multiple sclerosis. Acta Neurologica Scandinavica 103, 97104.CrossRefGoogle ScholarPubMed
Lublin, F.D. & Reingold, S.C. (1996). Defining the clinical course of multiple sclerosis. Neurology 46, 907911.CrossRefGoogle ScholarPubMed
McDonald, W.I., Compston, A., Edan, G., Goodkin, D., Hartung, H.P. & Lublin, F.D. (2001). Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Annals of Neurology 50, 121127.CrossRefGoogle ScholarPubMed
Merle, H., Olindo, S., Donnio, A., Beral, L., Richer, R., Smadja, D. & Cabre, P. (2010). Retinal nerve fiber layer thickness and spatial and temporal contrast sensitivity in multiple sclerosis. European Journal of Ophthalmology 20, 158166.CrossRefGoogle ScholarPubMed
Mortazavi, D., Kouzani, A.Z. & Soltanian-Zadeh, H. (2012). Segmentation of multiple sclerosis lesions in MR images: A review. Neuroradiology 54, 299320.Google Scholar
Mowry, E.M., Loguidice, M.J., Daniels, A.B., Jacobs, D.A., Markowitz, C.E., Galetta, S.L., Nano-Schiavi, M.L., Cutter, G.R., Maguire, M.G. & Balcer, L.J. (2009). Vision related quality of life in multiple sclerosis: correlation with new measures of low and high contrast letter acuity. Journal of Neurology, Neurosurgery & Psychiatry 80, 767772.CrossRefGoogle ScholarPubMed
Polman, C.H., Reingold, S.C., Edan, G., Filippi, M., Hartung, H.P. & Kappos, L. (2005). Diagnostic criteria for multiple sclerosis. Annals of Neurology 58, 840846.Google Scholar
Prinster, A., Quarantelli, M., Orefice, G., Lanzillo, R., Brunetti, A., Mollica, C., Salvatore, E., Morra, V.B., Coppola, G., Vacca, G., Alfano, B. & Salvatore, M. (2006). Grey matter loss in relapsing-remitting multiple sclerosis: A voxel-based morphometry study. Neuroimage 29, 859867.Google Scholar
Regan, D., Silver, R. & Murray, T.J. (1977). Visual acuity and contrast sensitivity in multiple sclerosis – Hidden visual loss: an auxiliary diagnostic test. Brain 100, 563579.Google Scholar
Rubin, G.S., Muñoz, B., Bandeen-Roche, K. & West, S.K. (2000). Monocular versus binocular visual acuity as measures of vision impairment and predictors of visual disability. Investigative Ophthalmology & Visual Science 41, 33273334.Google Scholar
Schwartz, S.H. (2004). Visual Perception: A Clinical Orientation (3rd ed.). New York: McGraw Hill.Google Scholar
Simas, M.L.B. (1985). Linearity and domain invariance in the visual system. Ph.D. Thesis, Queen’s University at Kingston, Ontario, Canada; University Microfilms International, Ann Arbor, Michigan.Google Scholar
Simas, M.L. & Dodwell, P.C. (1990). Angular frequency filtering: A basis for pattern decomposition. Spatial Vision 5, 5974.Google Scholar
Simas, M.L.B., Santos, N.A. & Thiers, F.A. (1997). Contrast sensitivity to angular frequency stimuli is higher than that for sinewave gratings in the respective middle range. Brazilian Journal of Medical and Biological Research 30, 633636.CrossRefGoogle ScholarPubMed
Sisto, D., Trojano, M., Vetrugno, M., Trabucco, T., Iliceto, G. & Sborgia, C. (2005). Subclinical visual involvement in multiple sclerosis: A study by MRI, frequency-doubling perimetry, standard perimetry and contrast sensitivity. Investigative Ophthalmology & Visual Science 46, 12641267.CrossRefGoogle ScholarPubMed
Walter, S.D., Ishikawa, H., Galetta, K.M., Sakai, R.E., Feller, D.J., Henderson, S.B., Wilson, J.A., Maguire, M.G., Galetta, S.L., Frohman, E., Calabresi, P.A., Schuman, J.S. & Balcer, L.J. (2012). Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 119, 12501257.CrossRefGoogle ScholarPubMed
Wetherill, G.B. & Levitt, H. (1965). Sequential estimation of points on a psychometric function. British Journal of Mathematical and Statistical Psychology 48, 110.Google Scholar
Wilkinson, F., Wilson, H.R. & Habak, C. (1998). Detection and recognition of radial frequency patterns. Vision Research 38, 35553568.Google Scholar
Wilkinson, F., James, T.W., Wilson, H.R., Gati, J.S., Menon, E.S. & Goodale, M.A. (2000). An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. Current Biology 10, 14551458.Google Scholar
Wilson, H.R., Wilkinson, F. & Asaad, W. (1997). Concentric orientation summation in human form vision. Vision Research 37, 23252330.CrossRefGoogle ScholarPubMed