Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:28:14.110Z Has data issue: false hasContentIssue false

A circadian clock in the Limulus brain transmits synchronous efferent signals to all eyes

Published online by Cambridge University Press:  02 June 2009

Leonard Kass
Affiliation:
Department of Zoology, University of Maine, Orono
Robert B. Barlow Jr
Affiliation:
Institute for Sensory Research, Syracuse University, Syracuse, NY

Abstract

A circadian clock in the brain of the horseshoe crab, Limulus polyphemus, has an important role in the function of the peripheral visual system. At night, the clock transmits neural activity to the lateral, ventral, and median eyes via efferent optic nerve fibers. The activity occurs in synchronous bursts (maximum rate of 2 bursts/s) with individual efferent fibers contributing a single spike in each burst. The circadian efferent activity originates in the protocerebrum. Lateral connections synchronize the efferent activity recorded from the two halves of the protocerebrum, suggesting the existence of bilateral circadian oscillators. Circadian efferent activity survives excision of the brain and isolation of the protocerebrum. We conclude that circadian clock and its complex neural circuitry are fundamental components of the Limulus visual system.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, R.B. Jr (1982). Seasonal changes in the circadian modulation of sensitivity of the Limulus lateral eye. Biological Bulletin 163, 380.Google Scholar
Barlow, R.B. Jr (1983). Circadian rhythms in the Limulus visual system. Journal of Neuroscience 3, 856870.CrossRefGoogle ScholarPubMed
Barlow, R.B. Jr (1988). Circadian rhythms in the sensitivity of the Limulus retina nearly compensate for the day-night changes in ambient illumination. Investigative Ophthalmology and Visual Science (Suppl.) 29, 350.Google Scholar
Barlow, R.B. Jr, Bolanowski, S.J. Jr & Brachman, M.L. (1977). Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science 197, 8689.CrossRefGoogle ScholarPubMed
Barlow, R.B. Jr & Chamberlain, S.C. (1980). Light and a circadian clock modulate structure and function in Limulus photoreceptors. In The Effect of Constant Light on the Visual Process, ed. Williams, T.P. & Baker, B.N., pp. 247269. New York: Plenum Press.CrossRefGoogle Scholar
Barlow, R.B. Jr, Chamberlain, S.C. & Bolanowski, S.J. Jr (1981). One eye modulates the sensitivity of another in Limulus. Investigative Ophthalmology and Visual Science (Suppl.) 21, 180.Google Scholar
Barlow, R.B. Jr, Chamberlain, S.C. & Kass, L. (1984). Circadian rhythms in retinal function. In The Molecular and Cellular Basis of Visual Acuity, ed. Hilfer, S.R. & Sheffield, J.B., pp. 3135. New York: Springer-Verlag.CrossRefGoogle Scholar
Barlow, R.B. Jr, Chamberlain, S.C. & Levinson, J.Z. (1980). Limulus brain modulates structure and function of the lateral eye. Science 210, 10371039.CrossRefGoogle Scholar
Barlow, R.B. Jr, Ireland, L.C. & Kass, L. (1982). Vision has a role in Limulus mating behavior. Nature 296, 6566.CrossRefGoogle Scholar
Barlow, R.B. Jr, Kaplan, E., Renninger, G.H. & Saito, T. (1985). Efferent control of circadian rhythms in Limulus lateral eye. Neuroscience Research (Suppl.) 2, S65–S78.Google ScholarPubMed
Barlow, R.B. Jr, Kaplan, E., Renninger, G.H. & Saito, T. (1987). Circadian rhythms in Limulus photoreceptors. I. Intracellular studies. Journal of General Physiology 89, 353378.CrossRefGoogle ScholarPubMed
Barlow, R.B. Jr, Powers, M.K., Howard, H. & Kass, L. (1986). Migration of Limulus for mating: Relation to lunar phase, tide height, and sunlight. Biological Bulletin 171, 310329.CrossRefGoogle Scholar
Batra, R. & Barlow, R.B. Jr (1990). Efferent control of temporal response properties in the Limulus lateral eye. Journal of General Physiology 95, 229244.CrossRefGoogle ScholarPubMed
Batra, R. & Chamberlain, S.C. (1985). Central connections of Limulus ventral photoreceptors revealed by intracellular straining. Journal of Neurobiology 16, 435441.CrossRefGoogle Scholar
Battelle, B.-A. (1980). Neurotransmitter candidates in the visual system of Limulus polyphemus: Synthesis and distribution of octoamine. Vision Research 20, 911922.CrossRefGoogle Scholar
Battelle, B.-A. (1991). Regulation of retinal functions by octopaminergic efferent neurons in Limulus. In Progress in Retinal Research, Vol. 10, Chap. 12, pp. 333355. New York: Pergamon Press.Google Scholar
Battelle, B.-A. & Evans, J.A. (1984). Octopamine release from centrifugal fibers of the Limulus peripheral visual system. Journal of Neurochemistry 42, 7179.CrossRefGoogle ScholarPubMed
Battelle, B.-A. & Evans, J.A. (1986). Veratridine-stimulated release of amine conjugates from centrifugal fibers in the Limulus peripheral visual system. Journal of Neurochemistry 46, 14641472.CrossRefGoogle ScholarPubMed
Battelle, B.-A., Evans, J.A. & Chamberlain, S.C. (1982). Efferent fibers to Limulus eyes synthesize and release octopamine. Science 216, 12501252.CrossRefGoogle Scholar
Bayer, D.S. & Barlow, R.B. Jr (1978). Limulus ventral eye: Physiological properties of photoreceptor cells in organ culture medium. Journal of General Physiology 72, 539564.CrossRefGoogle ScholarPubMed
Behrens, M.E. & Fahey, J.L. (1981). Slow potentials in nonspiking optic nerve fibers in the peripheral system of Limulus. Journal of Comparative Physiology A 141, 239247.CrossRefGoogle Scholar
Binkley, S., Macbride, S.E., Klein, D.C. & Ralph, C.L. (1973). Pineal enzymes: Regulation of avian melatonin synthesis. Science 181, 273275.CrossRefGoogle Scholar
Block, G.D. & Mcmahon, D.G. (1984). Cellular analysis of the Bulla ocular circadian pacemaker system. III. Localization of the circadian pacemaker system. Journal of Comparative Physiology 155, 387395.CrossRefGoogle Scholar
Block, G.D., Mcmahon, D.G., Wallace, S.F. & Friesen, W.O. (1984). Cellular analysis of the Bulla ocular circadian pacemaker system. I. A model for retinal organization. Journal of Comparative Physiology 217, 365378.CrossRefGoogle Scholar
Calman, B.G. & Battelle, B.-A. (1991). Central origin of the efferent neurons projection to the eyes of the Limulus polyphemus. Visual Neuroscience 6, 481495.CrossRefGoogle Scholar
Chamberlain, S.C. & Barlow, R.B. Jr (1979). Light and efferent activity control random turnover in Limulus photoreceptors. Science 206, 361363.CrossRefGoogle Scholar
Chamberlain, S.C. & Barlow, R.B. Jr (1980). Neuroanatomy of the visual afferents in the horseshoe crab (Limulus polyphemus). Journal of Comparative Neurology 192, 387400.CrossRefGoogle ScholarPubMed
Chamberlain, S.C. & Wyse, G.A. (1986). An atlas of the brain of Limulus polyphemus. Journal of Morphology 187, 363386.CrossRefGoogle ScholarPubMed
Chamberlain, S.C. & Barlow, R.B. Jr (1987). Control of structural rhythms in the lateral eye of Limulus: Interactions of natural lighting and circadian efferent activity. Journal of Neuroscience 7, 21352144.CrossRefGoogle ScholarPubMed
Chapman, R.M. & Lall, A.B. (1967). Electroretinogram characteristics and spectral mechanisms of the median ocellus and the lateral in Limulus polyphemus. Journal of General Physiology 50, 22672287.CrossRefGoogle ScholarPubMed
Edmunds, L.N. Jr (1988). Cellular and Molecular Bases of Biological Clocks: Models and Mechanisms for Circadian Timekeeping, p. 497. New York: Springer-Verlag.Google Scholar
Evans, J.A., Chamberlain, S.C. & Battelle, B.-A. (1983). Autoradio-graphic localization of newly synthesized octopamine to retinal efferents in the Limulus visual system. Journal of Comparative Neurology 219, 369383.CrossRefGoogle Scholar
Fahrenbach, W.H. (1971). The morphology of the Limulus visual system, IV: The lateral optic nerve. Zeitschrift fur Zellforschung und Microskopische Anatomie 114, 532545.CrossRefGoogle ScholarPubMed
Fahrenbach, W.H. (1973). The morphology of the Limulus visual system, V: Protocerebral neurosecretion and ocular innervation. Zeitschrift fur Zellforschung und Microskopische Anatomie 144, 153166.CrossRefGoogle Scholar
Fahrenbach, W.H. (1975). The visual system of the horseshoe crab Limulus polyphemus. International Review of Cytology 41, 285349.CrossRefGoogle ScholarPubMed
Fahrenbach, W.H. (1981). The morphology of the horseshoe crab (Limuluspolyphemus) visual system, VII: Innervation of photoreceptor neurons by neurosecretory efferents. Cell and Tissue Research 216, 655659.Google ScholarPubMed
Fahrenbach, W.H. (1985). Anatomical circuitry of lateral inhibition in the eye of the horseshoe crab, Limulus polyphemus. Proceedings of the Royal Society B (London) 225, 219249.Google ScholarPubMed
Fleissner, G. (1982). Isolation of an insect circadian clock. Journal of Comparative Physiology 149, 311316.CrossRefGoogle Scholar
Fleissner, G. (1983). Efferent neurosecretory fibers as pathways for circadian clock signals in the scorpion. Naturwissenschaften 70, 366377.CrossRefGoogle Scholar
Fleissner, G. & Fleissner, G. (1978). The optic nerve mediates the circadian pigment migration in the median eyes of the scorpion. Comparative Biochemistry and Physiology A 61, 6971.CrossRefGoogle Scholar
Gillette, M.U. (1986). The suprachiasmatic nuclei: Circadian phase-shifts induced at the time of hypothalamic slice preparation are preserved in vitro. Brain Research 379, 176181.CrossRefGoogle ScholarPubMed
Gillette, M.U., Reiman, A.M. & Lipeski, L.E. (1986). Circadian protein and phosphoprotein changes in the suprachiasmatic nuclei: The difference between night and day. Society for Neuroscience Abstracts 12, 845.Google Scholar
Green, D.J. & Gillette, R. (1982). Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Research 245, 198200.CrossRefGoogle ScholarPubMed
Hanna, W.B.J., Horne, J.A. & Renninger, G.H. (1988). Circadian photoreceptor organs in the Limulus. II. The telson. Journal of Comparative Physiology A 162, 133140.CrossRefGoogle Scholar
Heinrichs, S. & Fleissner, G. (1987). Neuronal components of a circadian clock in the scorpion, Androctonus australis: Central origin of the efferent neurosecretory elements projecting to the median eyes. Cell and Tissue Research 250, 277285.CrossRefGoogle Scholar
Herman, K.G. & Strumwasser, G. (1984). Regional specializations in the eye of Aplysia, a neuronal circadian oscillator. Journal of Comparative Neurology 230, 593613.CrossRefGoogle ScholarPubMed
Horne, J.A. & Renninger, G.H. (1988). Circadian photoreceptor organs in Limulus, I. Ventral, median, and lateral eyes. Journal of Comparative Physiology A 162, 127132.CrossRefGoogle Scholar
Jacklet, J.W. (1969). Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science 164, 562563.CrossRefGoogle ScholarPubMed
Jacklet, J.W. & Calquhoun, W. (1983). Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla. Journal of Neurocytology 12, 673696.CrossRefGoogle ScholarPubMed
Kaplan, E. & Barlow, R.B. Jr (1975). Properties of visual cells in the lateral eye of Limulus in situ: Extracellular recordings. Journal of General Physiology 66, 303326.CrossRefGoogle Scholar
Kaplan, E. & Barlow, R.B. Jr (1980). Circadian clock in Limulus brain increases response and decreases noise of retinal photoreceptors. Nature 286, 393395.CrossRefGoogle ScholarPubMed
Kaplan, E., Barlow, R.B. Jr, Renninger, G.H. & Purpura, K. (1990). Circadian rhythms in Limulus photoreceptors. II. Quantum bumps. Journal of General Physiology 96, 665685.CrossRefGoogle ScholarPubMed
Kass, L. & Barlow, R.B. Jr (1984). Efferent neurotransmission of circadian rhythms in the Limulus lateral eye. I. Octopamine-induced changes in retinal sensitivity. Journal of Neuroscience 4, 908917.CrossRefGoogle Scholar
Kass, L. & Berent, M.D. (1988). Circadian rhythms in adaptation to light of Limulus photoreception. Comparative Biochemistry and Physiology 91C, 229239.Google ScholarPubMed
Kass, L., Eisele, L.E. & Barlow, R.B. Jr (1983). Circadian clock in the excised Limulus brain transmits efferent activity to all eyes. Investigative Ophthalmology and Visual Science (Suppl.) 24, 218.Google Scholar
Kass, L., Pelletier, J.L., Renninger, G.H. & Barlow, R.B. Jr (1988). Efferent neurotransmission of circadian rhythms in Limulus lateral eye: II. Intracellular recordings in vitro. Journal of Com- parative Physiology A 164, 95105.CrossRefGoogle ScholarPubMed
Kass, L. & Renninger, G.H. (1988). Circadian change in function of Limulus ventral photoreceptors. Visual Neuroscience 1, 311.CrossRefGoogle ScholarPubMed
Lee, H.M. & Wyse, G.A. (1991). Immunocytochemical localization of octopamine in the central nervous system of Limulus polyphemus: A light- and electron-microscopic study. Journal of Comparative Neurology 288, 136153.Google Scholar
Luborsky-Moore, J. & Jacklet, J.W. (1977). Ultrastructure of the secondary cells in the Aplysia eye. Journal of Ultrastructure Research 60, 235245.CrossRefGoogle ScholarPubMed
Mancillas, J.R. & Brown, M.R. (1984). Neuropeptide modulation of photosensitivity: I. Presence, distribution, and characterization of a substance P-like peptide in the lateral eye of Limulus. Journal of Neuroscience 4, 832846.CrossRefGoogle ScholarPubMed
Moore, R.Y. (1983). Organization and function of a central nervous system circadian oscillator. Federation Proceedings 42, 27832789.Google ScholarPubMed
Moore, R.Y. & Eichler, V.B. (1972). Loss of circadian adrenal corticosterone rhythm following suprachiasmatic lesion in rat. Brain Research 42, 201206.CrossRefGoogle Scholar
Nolte, J. & Brown, J.E. (1972 a). Electrophysiological properties of cells in the median ocellus of Limulus. Journal of General Physiology 59, 167188.CrossRefGoogle ScholarPubMed
Nolte, J. & Brown, J.E. (1972 b). Ultraviolet-induced sensitivity to visible light to ultraviolet receptors of Limulus. Journal of General Physiology 59, 189200.Google ScholarPubMed
Olson, L. & Jacklet, J.W. (1985). The circadian pacemaker in the eye of Aplysia sends axons throughout the central nervous system. Journal of Neuroscience 5, 32143227.CrossRefGoogle ScholarPubMed
Page, T.L., Caldarola, P.C. & Pittendrigh, C.S. (1977). Mutual entrainment of bilaterally distributed circadian pacemakers. Proceedings of the National Academy of Sciences of the U.S.A. 74, 12771281.CrossRefGoogle Scholar
Patten, W. & Redenbaugh, W.A. (1900). Studies on Limulus II. The nervous system of Limulus polyphemus with observations upon the general anatomy. Journal of Morphology 16, 116.CrossRefGoogle Scholar
Pickard, G.E. & Zucker, I. (1986). Influence of deuterium oxide on circadian activity rhythms of hamsters: Role of the suprachiasmatic nuclei. Brain Research 376, 149154.CrossRefGoogle ScholarPubMed
Powers, M.K. & Barlow, R.B. Jr (1985). Behavioral correlates of circadian rhythms in the Limulus visual system. Biological Bulletin 169, 578591.CrossRefGoogle Scholar
Powers, M.K., Barlow, R.B. Jr & Kass, L. (1991). Visual performance of horseshoe crabs day and night. Visual Neuroscience 7, 179189.CrossRefGoogle ScholarPubMed
Renninger, G.H., Kaplan, E. & Barlow, R.B. Jr (1984). Circadian changes in gain of Limulus lateral eye photoreceptors. Biological Bulletin 167, 501.Google Scholar
Renninger, G.H., Kass, L., Pelletier, J.L. & Schimmel, R. (1988). The eccentric cell of the Limulus lateral eye: Encoder of circadian changes in visual responses. Journal of Comparative Physiology A 163, 259270.CrossRefGoogle Scholar
Renninger, G.H., Schimmel, R. & Farrell, C.A. (1989). Octopamine modulates photoreceptor function in the Limulus lateral eye. Visual Neuroscience 3, 8394.CrossRefGoogle ScholarPubMed
Rusak, B. (1982). Physiological models of the rodent circadian system. In Vertebrate Circadian Systems: Structure and Physiology, ed. Asshoff, J., Daan, S. & Groos, G.A., pp. 6274. Berlin and Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Rusak, B. & Groos, G. (1982). Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science 215, 14071409.CrossRefGoogle ScholarPubMed
Snodderly, D.M. Jr (1971). Processing of visual inputs by the brain of Limulus. Journal of Neurophysiology 34, 588611.CrossRefGoogle ScholarPubMed
Stephen, F. & Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity are eliminated by hypothalamic lesions. Proceedings of the National Academy of Sciences of the U.S.A. 69, 15831586.CrossRefGoogle Scholar
Uhl, G.R. & Reppert, S.M. (1986). Suprachiasmatic nucleus vasopressin messenger RNA: Circadian variation in normal and Brattleboro rats. Science 232, 390393.CrossRefGoogle ScholarPubMed
Westerman, L. & Barlow, R.B. Jr (1983). Limulus vision in the ultraviolet. Investigative Ophthalmology and Visual Science (Suppl.) 24, 218.Google Scholar
Yuwiler, A. (1983). Light and agonists alter pineal N-acetyltransferase induction by vasoactive intestinal polypeptide. Science 220, 10821083.CrossRefGoogle ScholarPubMed