Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:07:57.781Z Has data issue: false hasContentIssue false

Catalytic properties of the retinal rod outer segment disk ADP-ribosyl cyclase

Published online by Cambridge University Press:  27 January 2011

ANDREA FABIANO
Affiliation:
Department of Biology, University of Genoa, Genova, Italy
ISABELLA PANFOLI*
Affiliation:
Department of Biology, University of Genoa, Genova, Italy
DANIELA CALZIA
Affiliation:
Department of Biology, University of Genoa, Genova, Italy
MAURIZIO BRUSCHI
Affiliation:
Laboratory on Pathophysiology of Uraemia G. Gaslini Children Hospital, Genoa, Genova, Italy
SILVIA RAVERA
Affiliation:
Department of Biology, University of Genoa, Genova, Italy
ANGELA BACHI
Affiliation:
DIBIT-San Raffaele Scientific Institute, Milano, Italy
ANGELA CATTANEO
Affiliation:
DIBIT-San Raffaele Scientific Institute, Milano, Italy
ALESSANDRO MORELLI
Affiliation:
Department of Biology, University of Genoa, Genova, Italy
GIOVANNI CANDIANO
Affiliation:
Laboratory on Pathophysiology of Uraemia G. Gaslini Children Hospital, Genoa, Genova, Italy
*
Address correspondence and reprint requests to: Dr. Isabella Panfoli, Dipartimento di Biologia, Università di Genova, V.le Benedetto XV, 3 16132 Genova, Italy. E-mail: Isabella.Panfoli@unige.it

Abstract

Cyclic ADP-ribose (cADPR) is a second messenger modulating intracellular calcium levels. We have previously described a cADPR-dependent calcium signaling pathway in bovine rod outer segments (ROS), where calcium ions play a pivotal role. ROS ADP-ribosyl cyclase (ADPR-cyclase) was localized in the membrane fraction. In the present work, we examined the properties of the disk ADPR-cyclase through the production of cyclic GDP-ribose from the NAD+ analogue NGD+. The enzyme displayed an estimated Km for NGD+ of 12.5 ± 0.3 μM, a Vmax of 26.50 ± 0.70 pmol cyclic GDP-ribose synthesized/min/mg, and optimal pH of 6.5. The effect of divalent cations (Zn2+, Cu2+, and Ca2+) was also tested. Micromolar Zn2+ and Cu2+ inhibited the disk ADPR-cyclase activity (half maximal inhibitory concentration, IC50 = 1.1 and 3.6 μM, respectively). By contrast, Ca2+ ions had no effect. Interestingly, the properties of the intracellular membrane–associated ROS disk ADPR-cyclase are more similar to those of the ADPR-cyclase found in CD38-deficient mouse brain, than to those of CD38 or CD157. The novel intracellular mammalian ADPR-cyclase would elicit Ca2+ release from the disks at various rates in response to change in free Ca2+ concentrations, caused by light versus dark adaptation, in fact there was no difference in disk ADPR-cyclase activity in light or dark conditions. Data suggest that disk ADPR-cyclase may be a potential target of retinal toxicity of Zn2+ and may shed light to the role of Cu2+ and Zn2+ deficiency in retina.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amemiya, T. (2000). The eye and nutrition. Japanese Journal of Ophthalmology 44, 320.CrossRefGoogle ScholarPubMed
Balem, F., Yanamala, N. & Klein-Seetharaman, J. (2009). Additive effects of chlorin e6 and metal ion binding on the thermal stability of rhodopsin in vitro. Photochemistry and Photobiology 85, 471–478.CrossRefGoogle ScholarPubMed
Barnes, N., Tsivkovskii, R., Tsivkovskaia, N. & Lutsenko, S. (2005). The copper-transporting ATPases, Menkes and Wilson Disease proteins, have distinct roles in adult and developing cerebellum. Journal of Biological Chemistry 280, 9640–9645.CrossRefGoogle Scholar
Berridge, M.J., Bootman, M.D. & Lipp, P. (1998). Calcium-a life and death signal. Nature 395, 645–648.CrossRefGoogle ScholarPubMed
Caddell, J.L. (1995). Hypothesis: The possible role of magnesium and copper deficiency in retinopathy of prematurity. Magnesium Research 8, 261–270.Google ScholarPubMed
Cakir-Kiefer, C., Muller-Steffner, H., Oppenheimer, N. & Schuber, F. (2001). Kinetic competence of the cADP-ribose–CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling. Biochemical Journal 358, 399–406.CrossRefGoogle ScholarPubMed
Ceni, C., Muller-Steffner, H., Lund, F., Pochon, N., Schweitzer, A., De Waard, M., Schuber, F., Villaz, M. & Moutin, M.J. (2003). Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38-deficient mice. Journal of Biological Chemistry 278, 40670–40678.CrossRefGoogle ScholarPubMed
Ceni, C., Pochon, N., Villaz, M., Muller-Steffner, H., Schuber, F., Baratier, J., De Waard, M., Ronjat, M. & Moutin, M.J. (2006). The CD38-independent ADPribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain. Biochemical Journal 395, 417–426.CrossRefGoogle ScholarPubMed
Chen, L., Dentchev, T., Wong, R., Hahn, P., Wen, R., Bennett, J. & Dunaief, J.L. (2003). Increased expression of ceruloplasmin in the retina following photic injury. Molecular Vision 30, 151–158.Google Scholar
Fain, G.L. & Schröder, W.H. (1985). Calcium content and calcium exchange in dark-adapted toad rods. Journal of Physiology 368, 641–645.CrossRefGoogle ScholarPubMed
Glick, D.L., Hellmich, M.R., Beushausen, S., Tempst, P., Bayley, H. & Strumwasser, F. (1991). Primary structure of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regulation 2, 211–218.CrossRefGoogle ScholarPubMed
Graeff, R.M., Walseth, T.F., Fryxell, K., Branton, W.D. & Lee, H.C. (1994). Enzymatic synthesis and characterizations of cyclic GDP-ribose: a procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. Journal of Biological Chemistry 269, 30260–30267.CrossRefGoogle ScholarPubMed
Grahn, B.H., Paterson, P.G., Gottschall-Pass, K.T. & Zhang, Z. (2001). Zinc and the Eye. Journal of the American College of Nutrition 20, 106–118.CrossRefGoogle ScholarPubMed
Guse, A.H. (1999). Cyclic ADP-ribose: A novel Ca2+-mobilising second messenger. Cellular Signalling 11, 309–316.CrossRefGoogle ScholarPubMed
Hall, S.W. & Kuhn, H. (1986) Purification and properties of guanylate kinase from bovine retinas and rod outer segment. European Journal of Biochemistry 161, 551–556.CrossRefGoogle Scholar
Higashida, H., Hashii, M., Yokoyama, S., Hoshi, N., Chen, X.L., Egorova, A., Noda, M. & Zhang, J.S. (2001). Cyclic ADP-ribose as a second messenger revisited from a new aspect of signal transduction from receptors to ADPR-cyclase. Pharmacology and Therapeutics 90, 283–286.CrossRefGoogle Scholar
Hirata, Y., Kimura, N., Sato, K., Ohsugi, Y., Takasawa, S., Okamoto, H., Ishikawa, J., Kaisho, T., Ishihara, K. & Hirano, T. (1994). ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1. FEBS Letters 356, 244–248.Google ScholarPubMed
Hyun, H.J., Sohn, J., Ahn, Y.H., Shin, H.C., Koh, J.Y. & Yoon, Y.H. (2000). Depletion of intracellular zinc induces macromolecule synthesis- and caspase-dependent apoptosis of cultured retinal cells. Brain Research 30, 39–48.Google Scholar
Itoh, M., Ishihara, K. & Tomizawa, H. (1994). Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADPR-cyclase. Biochemical and Biophysical Research Communications 203, 1309–1317.Google Scholar
Krajacic, P., Qian, Y., Hahn, P., Dentchev, T., Lukinova, N. & Dunaief, J.L. (2006). Retinal localization and copper-dependent relocalization of the Wilson and Menkes disease proteins. Investigative Ophthalmology and Visual Science 47, 3129–34.Google Scholar
Krishnadev, N., Meleth, A.D. & Chew, E.Y. (2010). Nutritional supplements for age-related macular degeneration. Current Opinion in Ophthalmology 21, 184–189.CrossRefGoogle ScholarPubMed
Kukimoto, I., Hoshino, S., Kontani, K., Inageda, K., Nishina, H., Takahashi, K. & Katada, T. (1996). Stimulation of ADP-ribosyl cyclase activity of the cell surface antigen CD38 by zinc ions resulting from inhibition of its NAD+ glycohydrolase activity. European Journal of Biochemistry 239, 177–182.CrossRefGoogle ScholarPubMed
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227, 680–685.CrossRefGoogle ScholarPubMed
Lamba, O.P., Borchman, D. & O’Brien, P.J. (1994). Fourier transform infrared study of the rod outer segment disk and plasma membranes of vertebrate retina. Biochemistry 33, 1704–1712.CrossRefGoogle ScholarPubMed
Miceli, M.V., Tate, D.J. Jr, Alcock, N.W. & Newsome, D.A. (1999). Zinc deficiency and oxidative stress in the retina of pigmented rats. Investigative Ophthalmology and Visual Science 40, 1238–1244.Google ScholarPubMed
Mothet, J.P., Fossier, P., Meunier, F.M., Stinnakre, J., Tauc, L. & Baux, G. (1998). Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia. Journal of Physiology 507, 405–414.CrossRefGoogle Scholar
Notari, L., Morelli, A. & Pepe, I.M. (2003). Studies on adenylate kinase isoform bound to disk membranes of the rod outer segment of bovine retina. Photochemical and Photobiological Sciences 12, 1299–1302.CrossRefGoogle Scholar
Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745.CrossRefGoogle ScholarPubMed
Panfoli, I., Morelli, A. & Pepe, I.M. (1994). Characterization of Ca2+-ATPase in rod outer segment disk membranes. Biochemical and Biophysical Research Communications 204, 813–819.CrossRefGoogle ScholarPubMed
Panfoli, I., Musante, L., Bachi, A., Ravera, S., Calzia, D., Cattaneo, A., Bruschi, M., Bianchini, P., Diaspro, A., Morelli, A., Pepe, I.M., Tacchetti, C. & Candiano, G. (2008). Proteomic analysis of the retinal rod outer segment disks. Journal of Proteome Research 7, 2654–2669.CrossRefGoogle ScholarPubMed
Panfoli, I., Ravera, S., Fabiano, A., Magrassi, R., Diaspro, A., Morelli, A. & Pepe, I.M. (2007). Localization of the cyclic ADP-ribose–dependent calcium signaling pathway in bovine rod outer segments. Investigative Ophthalmology and Visual Science 48, 978–984.CrossRefGoogle ScholarPubMed
Partida-Sanchez, S., Cockayne, D.A., Monard, S., Jacobson, E.L., Oppenheimer, N., Garvy, B., Kusser, K., Goodrich, S., Howard, M. & Harmsen, A. (2001). Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Medicine 7, 1209–1216.CrossRefGoogle ScholarPubMed
Pepe, I.M. (2001). Recent advances in our understanding of rhodopsin and phototransduction. Progress in Retinal and Eye Research 20, 733–759.CrossRefGoogle ScholarPubMed
Pepe, I.M., Panfoli, I., Notari, L. & Morelli, A. (2000). ATP synthesis in rod outer segments of bovine retina by the reversal of the disk calcium pump. Biochemical and Biophysical Research Communications 268, 625–627.CrossRefGoogle Scholar
Prasad, A.S. (1995). Zinc: An overview. Nutrition 11, 93–99.Google ScholarPubMed
Price, S.R. & Pekala, P.H. (1987). Pyridine nucleotide-linked glycohydrolases. In Pyridine Nucleotide Coenzymes: Chemical, Biochemical and Medical Aspects, eds. Dolphin, D., Poulson, R. and Avramovic, O., pp. 513–548. New York: John Wiley & Sons.Google Scholar
Ravera, S., Calzia, D., Bianchini, P., Diaspro, A. & Panfoli, I. (2007). Confocal laser scanning microscopy of retinal rod outer segment intact disks: New labeling technique. Journal of Biomedical Optics 12, 050501.CrossRefGoogle ScholarPubMed
Reyes-Harde, M., Empson, R., Potter, B.V., Galione, A. & Stanton, P.K. (1999). Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proceedings of the National Academy of Sciences of the United States of America 96, 4061–4066.CrossRefGoogle ScholarPubMed
Rutter, G.A. (2003). Calcium signalling: NAADP comes out of the shadows. Biochemical Journal 373, e3–e4.CrossRefGoogle ScholarPubMed
Schnetkamp, P.P. & Daemen, F.J. (1982). Isolation and characterization of osmotically sealed bovine rod outer segments. Methods in Enzymology 81, 110–116.CrossRefGoogle ScholarPubMed
Schuber, F. & Lund, F.E. (2004). Structure and enzymology of ADPR-cyclases: conserved enzymes that produce multiple calcium mobilizing metabolites. Current Molecular Medicine 4, 249–261.Google Scholar
Smith, H.G. Jr & Litman, B.J. (1982). Preparation of osmotically intact rod outer segment disks by Ficoll flotation. Methods in Enzymology 81, 57–61.CrossRefGoogle ScholarPubMed
Stryer, L. (1991). Molecular mechanism of visual excitation. Harvey Lectures 87, 129–143.Google ScholarPubMed
Wald, G. & Brown, P.K. (1954). The molar extinction of rhodopsin. Journal of General Physiology 37, 189–200.CrossRefGoogle Scholar
Walseth, T.F., Aarhus, R., Zeleznikar, R.J. Jr & Lee, H.C. (1991). Determination of endogenous levels of cyclic ADP-ribose in rat tissues. Biochimica et Biophysica Acta 1094, 113–120.CrossRefGoogle ScholarPubMed
Yamada, M., Mizuguchi, M., Otsuka, N., Ikeda, K. & Takahashi, H. (1997). Ultrastructural localization of CD38 immunoreactivity in rat brain. Brain Research 756, 52–60.CrossRefGoogle ScholarPubMed