Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T00:00:29.708Z Has data issue: false hasContentIssue false

Absence of binocular summation, eye dominance, and learning effects in color discrimination

Published online by Cambridge University Press:  06 September 2006

MARCELO FERNANDES COSTA
Affiliation:
Dep. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil Núcleo de Neurociências e Comportamento, Universidade de São Paulo, São Paulo, Brasil
DORA FIX VENTURA
Affiliation:
Dep. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil Núcleo de Neurociências e Comportamento, Universidade de São Paulo, São Paulo, Brasil
FELIPE PERAZZOLO
Affiliation:
Dep. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil Núcleo de Neurociências e Comportamento, Universidade de São Paulo, São Paulo, Brasil
MARCIO MURAKOSHI
Affiliation:
Dep. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil Núcleo de Neurociências e Comportamento, Universidade de São Paulo, São Paulo, Brasil
LUIZ CARLOS DE LIMA SILVEIRA
Affiliation:
Dep. Fisiologia Universidade Federal do Pará, Belém, Brasil Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Brasil.

Abstract

We evaluated binocular summation, eye dominance, and learning in the Trivector and Ellipses procedures of the Cambridge Colour Test (CCT). Subjects (n = 36, 18–30 years old) were recruited among students and staff from the University of São Paulo. Inclusion criteria were absence of ophthalmological complaints and best-corrected Snellen VA 20/20 or better. The subjects were tested in three randomly selected eye conditions: binocular, monocular dominant eye, and nondominant eye. Results obtained in the binocular and monocular conditions did not differ statistically for thresholds measured along the protan, deutan, and tritan confusion axes (ANOVA, P > 0.05). No statistical difference was detected among discrimination ellipses obtained in binocular or monocular conditions (ANOVA, P > 0.05), suggesting absence of binocular summation or of an effect of eye dominance. Possible effects of learning were examined by comparing successive thresholds obtained in the three testing conditions. There was no evidence of improvement as a function of testing order (ANCOVA, P > 0.05). We conclude that CCT thresholds are not affected by binocularity, eye dominance, or learning. Our results differ from those found by Verriest et al. (1982) using the Farnsworth-Munsell 100 Hue test and Hovis et al. (2004) using the Farnsworth-Munsell panel D-15 test.

Type
CHROMATIC CODING
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R.S. & Vidinova-Zlatkova, M.B. (2005). Binocular summation for detection and resolution of blue–yellow gratings in foveal and peripheral vision. Investigative Ophthalmology and Visual Science 46, e-abstract 4566.Google Scholar
Bearse, M.A. & Freeman, R.D. (1993). Binocular summation in spatial-frequency discrimination depends on contrast. Investigative Ophthalmology and Visual Science 34, e-abstract 1187.Google Scholar
Bearse, M.A. & Freeman, R.D. (1994). Binocular summation in orientation discrimination depends on stimulus contrast and duration. Vision Research 34, 1929.CrossRefGoogle Scholar
Behar, I. & Walsh, D.J. (1988). Binocular summation for resolution and contrast sensitivity test charts. Aviation Space and Environmental Medicine 59, 487487.Google Scholar
Bimler, D. & Kirkland, J. (2002). Sex differences in color vision and the salience of color-space axes. Journal of Vision 2, 2828a.Google Scholar
Canto-Pereira, L.H.M., Ventura, D.F., Costa, M.F., Lago, M., Rodrigues, A.R., Simoes, A.L., & Silveira, L.C.L. (2005). Occupational exposure to Hg impairs visual functions in dentists and factory workers in Brazil. Environmental Toxicology and Pharmacology 19, 517522.CrossRefGoogle Scholar
Casco, C., Grieco, A., Campana, G., Corvino, M.P., & Caputo, G. (2005). Attention modulates psychophysical and electrophysiological response to visual texture segmentation in humans. Vision Research 45, 23842396.CrossRefGoogle Scholar
Coren, S. (1999). Sensorimotor performance as a function of eye dominance and handedness. Perceptual and Motor Skills 88, 424426.CrossRefGoogle Scholar
Costa, M.F., Oliveira, A.G.F., Santana, C.F., Lago, M., Zatz, M., & Ventura, D.F. (2005). Red–green color vision and luminance contrast sensitivity losses in Duchenne Muscular Dystrophy. Investigative Ophthalmology and Visual Science 46 e-abstract 4332.Google Scholar
Costa, M.F., Ventura, D.F., Pavanello, R.C.M., Cerqueira, A., & Zatz, M. (2004). Color vision phenotype in Duchenne Muscle Dystrophy. Investigative Ophthalmology and Visual Science 45, e-abstract 4576.Google Scholar
Cowan, R.L., Frederick, B.D., Rainey, M., Levin, J.M., Maas, L.C., Bang, J., Hennen, J., Lukas, S.E., & Renshaw, P.F. (2000). Sex differences in response to red and blue light in human primary visual cortex: A bold fMRI study. Psychiatry Research—Neuroimaging 100, 129138.CrossRefGoogle Scholar
Dobkins, K.R., Gunther, K.L., & Peterzell, D.H. (2000). What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity? Vision Research 40, 613628.Google Scholar
Erdogan, A.R., Ozdikici, M., Aydin, M.D., Aktas, O., & Dane, S. (2002). Right and left visual cortex areas in healthy subjects with right- and left-eye dominance. International Journal of Neuroscience 112, 517523.CrossRefGoogle Scholar
Festman, Y. & Ahissar, M. (2004). Attentional states and the degree of visual adaptation to gratings. Neural Networks 17, 849860.CrossRefGoogle Scholar
Gagnon, R.W.C. & Kline, D.W. (2003). Senescent effects on binocular summation for contrast sensitivity and spatial interval acuity. Current Eye Research 27, 315321.CrossRefGoogle Scholar
Gualtieri, M., Nishi, M., Lago, M., & Ventura, D.F. (2005). Color discrimination and chromatic contrast sensitivity assessed in type 2 diabetic patients without retinopathy. Investigative Ophthalmology and Visual Science 46 e-abstract 4570.Google Scholar
Gualtieri, M., Oliveira, A.G.F., Canto-Pereira, L.H.M., Costa, M.F., Salomao, S.R., Carelli, V., Sadun, A.A., Quiros, P., & Ventura, D.F. (2004). Sparing of the blue system in LHON (Leber's hereditary optic neuropathy). Investigative Ophthalmology and Visual Science 45, e-abstract 4331.Google Scholar
Handa, T., Mukuno, K., Uozato, H., Niida, T., Shoji, N., & Shimizu, K. (2004). Effects of dominant and nondominant eyes in binocular rivalry. Optometry and Vision Science 81, 377382.CrossRefGoogle Scholar
Hovis, J.K., Ramaswamy, S., & Anderson, M. (2004). Repeatability indices for the Farnsworth D-15 test. Visual Neuroscience 21, 449453.CrossRefGoogle Scholar
Jameson, K.A., Highnote, S.M., & Wasserman, L.M. (2001). Richer color experience in observers with multiple photopigment opsin genes. Psychonomic Bulletin and Review 8, 244261.CrossRefGoogle Scholar
Jimenez, J.R., Medina, J.M., del Barco, L.J., & Diaz, J.A. (2002). Binocular summation of chromatic changes as measured by visual reaction time. Perception and Psychophysics 64, 140147.CrossRefGoogle Scholar
Jimenez, J.R., Valero, E., Anera, R.G., Martinez, J.A., & Salas, C. (2003). Chromatic changes in relation to binocular summation determined with contrast thresholds. Color Research and Application 28, 366370.CrossRefGoogle Scholar
Jordan, G. & Mollon, J.D. (1993). A study of women heterozygous for colour deficiencies. Vision Research 33, 14951508.CrossRefGoogle Scholar
Kamis, U., Gunduz, K., Okudan, N., Gokbel, H., Bodur, S., & Tan, L. (2005). Relationship between eye dominance and pattern electroretinograms in normal human subjects. International Journal of Neuroscience 115, 185192.CrossRefGoogle Scholar
Khanani, A.M., Brown, S.M., & Xu, K.T. (2004). Normal values for a clinical test of letter-recognition contrast thresholds. Journal of Cataract and Refractive Surgery 30, 23772382.CrossRefGoogle Scholar
Liu, G.T., Miki, A., Goldsmith, Z., van Erp, T.G.M., Francis, E., Quinn, G.E., Modestino, E.J., Bonhomme, G.R., & Haselgrove, J.C. (2002). Eye dominance in the visual cortex using functional MRI at 1.5 T: An alternative method. Journal of Aapos 6, 4048.Google Scholar
Liu, L. & Schor, C.M. (1995). Binocular combination of contrast signals from orthogonal orientation channels. Vision Research 35, 25592567.CrossRefGoogle Scholar
Mapp, A.P., Ono, H., & Barbeito, R. (2003). What does the dominant eye dominate? A brief and somewhat contentious review. Perception and Psychophysics 65, 310317.CrossRefGoogle Scholar
Newman, N.J., Wolfe, J.M., Stewart, M.I., & Lessell, S. (1991). Binocular visual function in patients with a history of monocular optic neuritis. Clinical Vision Sciences 6, 95107.Google Scholar
Pardhan, S. (1996). A comparison of binocular summation in young and older patients. Current Eye Research 15, 315319.CrossRefGoogle Scholar
Pardhan, S. & Gilchrist, J. (1992). Binocular contrast summation and inhibition in amblyopia—the influence of the interocular difference on binocular contrast sensitivity. Documenta Ophthalmologica 82, 239248.CrossRefGoogle Scholar
Pardhan, S. & Whitaker, A. (2003). Binocular summation to gratings in the peripheral field in older subjects is spatial frequency dependent. Current Eye Research 26, 297302.CrossRefGoogle Scholar
Parker, AJ. & Cumming, B.G. (2001). Cortical mechanisms of binocular stereoscopic vision. Vision: From Neurons to Cognition 134, 205216.Google Scholar
Regan, B.C., Reffin, J.P., & Mollon, J.D. (1994). Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Research 34, 12791299.CrossRefGoogle Scholar
Roth, H.L., Lora, A.N., & Heilman, K.M. (2002). Effects of monocular viewing and eye dominance on spatial attention. Brain 125, 20232035.CrossRefGoogle Scholar
Silva, M.F., Faria, P., Regateiro, F.S., Forjaz, V., Januario, C., Freire, A., & Castelo-Branco, M. (2005). Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson's disease. Brain 128, 22602271.CrossRefGoogle Scholar
Simmons, D.R. & Kingdom, F.A.A. (1994). Contrast thresholds for stereoscopic depth identification with isoluminant and isochromatic stimuli. Vision Research 34, 29712982.CrossRefGoogle Scholar
Simmons, D.R. & Kingdom, F.A.A. (1998). On the binocular summation of chromatic contrast. Vision Research 38, 10631071.CrossRefGoogle Scholar
Sugiyama, Y. & Lee, M.S. (2005). Relation of eye dominance with performance and subjective ratings in golf putting. Perceptual and Motor Skills 100, 761766.CrossRefGoogle Scholar
Ventura, D.F., Costa, M.F., Gualtieri, M., Nishi, M., Bernick, M., Bonci, D.M., & de Souza, J.M. (2003a). Early vision loss in diabetic patients assessed by the Cambridge Colour Test. In Normal and Defective Colour Vision, eds. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 395403. New York: Oxford University Press, Inc.
Ventura, D.F., Costa, M.T., Costa, M.F., Berezovsky, A., Salomão, S.R., Simões, A.L., Lago, M., Canto-Pereira, L.H.M., Faria, M.A., de Souza, J.M., & Silveira, L.C.L. (2004). Multifocal and full-field electroretinogram changes associated with color-vision loss in mercury vapor exposure. Visual Neuroscience 21, 421429.CrossRefGoogle Scholar
Ventura, D.F., Silveira, L.C.L., Rodrigues, A.R., de Souza, J., Gualtieri, M., Bonci, D.M., & Costa, M.F. (2003b). Preliminary norms for the Cambridge Colour Test. In Colour and Defective Colour Vision, eds. Mollon, J. D., Pokorny, J. & Knoblauch, K., pp. 331339. New York: Oxford University Press, Inc.
Ventura, D.F., Simoes, A.L., Tomaz, S., Costa, M.F., Lago, M., Costa, M.T.V., Pereira, L.H.M.C., Souza, J.M., Faria, M.A.M., & Silveira, L.C.L. (2005). Color vision and contrast sensitivity losses of mercury intoxicated industry workers in Brazil. Environmental Toxicology and Pharmacology 19(3), 523529.CrossRefGoogle Scholar
Verriest, G., Van Laethem, J., & Uvijls, A. (1982). A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores. American Journal Ophthalmogy 93, 635642.CrossRefGoogle Scholar
Wijk, H., Berg, S., Sivik, L., & Steen, B. (1999). Color discrimination, color naming and color preferences in 80-year olds. Aging Clinical and Experimental Research 11, 176185.Google Scholar