Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T23:42:43.595Z Has data issue: false hasContentIssue false

Reversal potential of GABA-induced currents in rod bipolar cells of the rat retina

Published online by Cambridge University Press:  02 June 2009

Masayuki Yamashita
Affiliation:
Max-Planck-Institut fü Hirnforschung, Deutschordenstrasse 46, D-6000 Frankfurt 71, Germany
Heinz Wässle
Affiliation:
Max-Planck-Institut fü Hirnforschung, Deutschordenstrasse 46, D-6000 Frankfurt 71, Germany

Abstract

GABA-induced whole-cell currents were measured in rod bipolar cells dissociated from the adult rat retina. The patch-clamp electrode contained nystatin, which made the cell membrane electrically permeable without rupture, thus retarding the rate of diffusion of Cl ions from the patch pipette to the cell interior. The reversal potential of the GABA-induced currents was around –70 mV at an extracellular Cl-–concentration of 149 mM. We conclude that GABA generates hyperpolarizing responses in rod bipolar cells of the rat retina.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bormann, J., Hamil, O.P. & Sakmann, B. (1987). Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. Journal of Physiology (London) 385, 243286.CrossRefGoogle ScholarPubMed
Chun, M.H. & Wässle, H. (1989). GABA-like immunoreactivity in the cat retina: electron microscopy. Journal of Comparative Neurology 279, 5567.CrossRefGoogle ScholarPubMed
Freed, M.A., Smith, R.G. & Sterling, P. (1987). Rod bipolar array in the cat retina: pattern of input from rods and GABA accumulating amacrine cells. Journal of Comparative Neurology 266, 445455.CrossRefGoogle ScholarPubMed
Horn, R. & Marty, A. (1988). Muscarinic activation of ionic currents measured by a new whole-cell recording method. Journal of General Physiology 92, 145159.CrossRefGoogle ScholarPubMed
Kaneko, A., Pinto, L.H. & Tachibana, M. (1989). Transient calcium current of retinal bipolar cells of the mouse. Journal of Physiology (London) 410, 613629.CrossRefGoogle ScholarPubMed
Karschin, A. & Wässle, H. (1990). Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. Journal of Neurophysiology 63, 860876.CrossRefGoogle ScholarPubMed
Marty, A.& Finkelstein, A. (1975). Pores formed in lipid bilayer membranes by nystatin. Journal of General Physiology 65, 515526.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Owczarzak, M.T. (1989). Distribution of GABA immunoreactivity in the cat retina: a light- and electron-microscopic study. Visual Neuroscience 2, 425435.CrossRefGoogle ScholarPubMed
Suzuki, S., Tachibana, M. & Kaneko, A. (1990). Effects of glycine and GABA on isolated bipolar cells of the mouse retina. Journal of Physiology (London) 421, 645662.CrossRefGoogle ScholarPubMed
Tachibana, M. & Kaneko, A. (1987). γ–aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proceedings of the National Academy of Sciences of the U.S.A. 84, 35013505.CrossRefGoogle ScholarPubMed
Yeh, H.H., Lee, M.B. & Cheun, J.E. (1990). Properties of GABA-activated whole-cell currents in bipolar cells of the rat retina. Visual Neuroscience 4, 349357.CrossRefGoogle ScholarPubMed