Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T10:00:49.298Z Has data issue: false hasContentIssue false

Nonretinotopic visual processing in the brain

Published online by Cambridge University Press:  29 September 2015

DAVID MELCHER*
Affiliation:
Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
MARIA CONCETTA MORRONE
Affiliation:
Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy Italy Scientific Institute Stella Maris (IRCSS), Pisa, Italy
*
*Address correspondence to: Prof. David Melcher, Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy. E-mail: david.melcher@unitn.it

Abstract

A basic principle in visual neuroscience is the retinotopic organization of neural receptive fields. Here, we review behavioral, neurophysiological, and neuroimaging evidence for nonretinotopic processing of visual stimuli. A number of behavioral studies have shown perception depending on object or external-space coordinate systems, in addition to retinal coordinates. Both single-cell neurophysiology and neuroimaging have provided evidence for the modulation of neural firing by gaze position and processing of visual information based on craniotopic or spatiotopic coordinates. Transient remapping of the spatial and temporal properties of neurons contingent on saccadic eye movements has been demonstrated in visual cortex, as well as frontal and parietal areas involved in saliency/priority maps, and is a good candidate to mediate some of the spatial invariance demonstrated by perception. Recent studies suggest that spatiotopic selectivity depends on a low spatial resolution system of maps that operates over a longer time frame than retinotopic processing and is strongly modulated by high-level cognitive factors such as attention. The interaction of an initial and rapid retinotopic processing stage, tied to new fixations, and a longer lasting but less precise nonretinotopic level of visual representation could underlie the perception of both a detailed and a stable visual world across saccadic eye movements.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afraz, A. & Cavanagh, P. (2009). The gender-specific face aftereffect is based in retinotopic not spatiotopic coordinates across several natural image transformations. Journal of Vision 9(10), 10.1–17.CrossRefGoogle Scholar
Ağaoğlu, M.N., Herzog, M.H. & Oğmen, H. (2012). Non-retinotopic feature processing in the absence of retinotopic spatial layout and the construction of perceptual space from motion. Vision Research 71, 1017.CrossRefGoogle ScholarPubMed
Alvarez, G.A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Science 15, 122131.CrossRefGoogle ScholarPubMed
Andersen, R.A. & Mountcastle, V.B. (1983). The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience 3, 532548.CrossRefGoogle ScholarPubMed
Au, R.K., Ono, F. & Watanabe, K. (2012). Time dilation induced by object motion is based on spatiotopic but not retinotopic positions. Frontiers in Psychology 3, 58.CrossRefGoogle Scholar
Bellebaum, C. & Daum, I. (2006). Time course of cross-hemispheric spatial updating in the human parietal cortex. Behavioral Brain Research 169, 150161.CrossRefGoogle ScholarPubMed
Biber, U. & Ilg, U.J. (2011). Visual stability and the motion aftereffect: A psychophysical study revealing spatial updating. PLoS One 6, e16265.CrossRefGoogle ScholarPubMed
Bischof, N. & Kramer, E. (1968). Untersuchungen und Überlegungen zur Richtungswahrnehmung bei wilkuerlichen sakkadischen Augenbewegungen. Psychologische Forschung 32, 185218.CrossRefGoogle Scholar
Boi, M., Oğmen, H., Krummenacher, J., Otto, T.U. & Herzog, M.H. (2009). A (fascinating) litmus test for human retino- vs. non-retinotopic processing. Journal of Vision 9, 111.CrossRefGoogle ScholarPubMed
Bompas, A. & O’Regan, J.K. (2006). Evidence for a role of action in color perception. Perception 35, 6578.CrossRefGoogle Scholar
Bradley, D.C., Maxwell, M., Andersen, R.A., Banks, M.S. & Shenoy, K.V. (1996). Mechanisms of heading perception in primate visual cortex. Science 273, 15441547.CrossRefGoogle ScholarPubMed
Bremmer, F. (2000). Eye position effects in macaque area V4. Neuroreport 11, 12771283.CrossRefGoogle ScholarPubMed
Bremmer, F., Ilg, U.J., Thiele, A., Distler, C. & Hoffmann, K-P. (1997). Eye position effects in monkey cortex. I. Visual and pursuit- related activity in extrastriate areas MT and MST. Journal of Neurophysiology 77, 944961.CrossRefGoogle ScholarPubMed
Burr, D.C., Cicchini, G.M., Arrighi, R. & Morrone, M.C. (2011). Spatiotopic selectivity of adaptation-based compression of event duration. Journal of Vision 11(2), 21.CrossRefGoogle ScholarPubMed
Burr, D.C. & Morrone, M.C. (2011). Spatiotopic coding and remapping in humans. Philosophical Transactions of the Royal Society of London B Biological Sciences 366, 504515.CrossRefGoogle ScholarPubMed
Burr, D.C. & Ross, J. (1986). Visual processing of motion. Trends in Neuroscience 9, 304306.CrossRefGoogle Scholar
Burr, D.C., Ross, J. & Morrone, M.C. (1986). Seeing objects in motion. Proceedings of the Royal Society of London. Series B, Biological Sciences 227, 249265.Google ScholarPubMed
Burr, D.C., Tozzi, A. & Morrone, M.C. (2007). Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nature Neuroscience 10, 423425.CrossRefGoogle ScholarPubMed
Cha, O. & Chong, S.C. (2014). The background is remapped across saccades. Experimental Brain Research 232, 609618.CrossRefGoogle ScholarPubMed
Colby, C.L. & Goldberg, M.E. (1999). Space and attention in parietal cortex. Annual Reviews Neuroscience 22, 319349.CrossRefGoogle ScholarPubMed
Corbett, J.E. & Melcher, D. (2014). Characterizing ensemble statistics: Mean size is represented across multiple frames of reference. Attention, Perception & Psychophysics 76, 746758.CrossRefGoogle ScholarPubMed
Crespi, S., Biagi, L., d'Avossa, G., Burr, D.C., Tosetti, M. & Morrone, M.C. (2011). Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention. PLoS ONE 6, e21661.CrossRefGoogle ScholarPubMed
Daddaoua, N., Dicke, P.W. & Thier, P. (2014). Eye position information is used to compensate the consequences of ocular torsion on V1 receptive fields. Nature Communications 5, 3047.CrossRefGoogle ScholarPubMed
d'Avossa, G., Tosetti, M., Crespi, S., Biagi, L., Burr, D.C. & Morrone, M.C. (2007). Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nature Neuroscience 10, 249255.CrossRefGoogle ScholarPubMed
De Pisapia, N., Kaunitz, L. & Melcher, D. (2010). Backward masking and unmasking across saccadic eye movements. Current Biology 20, 613617.CrossRefGoogle ScholarPubMed
Demeyer, M., De Graef, P., Wagemans, J. & Verfaillie, K. (2009). Transsaccadic identification of highly similar artificial shapes. Journal of Vision 9, 114.CrossRefGoogle ScholarPubMed
Demeyer, M., De Graef, P., Wagemans, J. & Verfaillie, K. (2010). Parametric integration of visual form across saccades. Vision Research 50, 12251234.CrossRefGoogle ScholarPubMed
Demeyer, M., De Graef, P., Verfaillie, K. & Wagemans, J. (2011). Perceptual grouping of object contours survives saccades. PLoS One 6, e21257.CrossRefGoogle ScholarPubMed
Dennett, D.C. (1991). Consciousness Explained. Boston: Little, Brown & Co.Google Scholar
Dennett, H.W., Edwards, M. & Mckone, E. (2012). Global face distortion aftereffects tap face-specific and shape-generic processes. Journal of Vision 12(11), 11. http://jov.arvojournals.org/article.aspx?articleid=2191944CrossRefGoogle ScholarPubMed
Denny, D. & Adorjani, C. (1972). Orientation specificity of visual cortical neurons after head tilt. Experimental Brain Research 14, 312317.CrossRefGoogle Scholar
DeSouza, J.F., Dukelow, S.P. & Vilis, T. (2002). Eye position signals modulate early dorsal and ventral visual areas. Cerebral Cortex 12, 991997.CrossRefGoogle ScholarPubMed
Deubel, H. & Schneider, W.X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research 38, 31473159.CrossRefGoogle Scholar
Duhamel, J., Bremmer, F., Benhamed, S. & Graf, W. (1997). Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845848.CrossRefGoogle ScholarPubMed
Duhamel, J.R., Colby, C.L. & Goldberg, M.E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 9092.CrossRefGoogle ScholarPubMed
Duncan, J., Ward, R. & Shapiro, K. (1994). Direct measurement of attentional dwell time in human vision. Nature 369, 313315.CrossRefGoogle ScholarPubMed
Durand, J.B., Trotter, Y. & Celebrini, S. (2010). Privileged processing of the straightahead direction in primate area V1. Neuron 66, 126137.CrossRefGoogle ScholarPubMed
Ezzati, A., Golzar, A. & Afraz, A.S. (2008). Topography of the motion aftereffect with and without eye movements. Journal of Vision 8(14), 23.1–16.CrossRefGoogle ScholarPubMed
Fischer, E., Bulthoff, H.H., Logothetis, N.K. & Bartels, A. (2012). Human areas V3A and V6 compensate for self-induced planar visual motion. Neuron 73, 12281240.CrossRefGoogle ScholarPubMed
Fischer, J., Spotswood, N. & Whitney, D. (2011). The emergence of perceived position in the visual system. Journal of Cognitive Neuroscience 23, 119136.CrossRefGoogle ScholarPubMed
Fischer, J.T. & Whitney, D. (2014). Serial dependence in perception. Nature Neuroscience 17, 738743.CrossRefGoogle ScholarPubMed
Fracasso, A., Caramazza, A. & Melcher, D. (2010). Continuous perception of motion and shape across saccadic eye movements. Journal of Vision 10, 14.CrossRefGoogle ScholarPubMed
Freiwald, W.A. (2007). Attention to objects made of features. Trends in Cognitive Sciences 11, 453454.CrossRefGoogle ScholarPubMed
Galletti, C., Battaglini, P.P. & Fattori, P. (1990). 'Real-motion' cells in area V3A of macaque visual cortex. Experimental Brain Research 82, 6776.CrossRefGoogle ScholarPubMed
Galletti, C., Battaglini, P.P. & Fattori, P. (1993). Parietal neurons encoding spatial locations in craniotopic coordinates. Experimental Brain Research 96, 221229.CrossRefGoogle ScholarPubMed
Galletti, C., Battaglini, P.P. & Fattori, P. (1995). Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. European Journal of Neuroscience 7, 24862501.CrossRefGoogle ScholarPubMed
Gardner, J.L., Merriam, E.P., Movshon, J.A. & Heeger, D.J. (2008). Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. Journal of Neuroscience 28, 39883999.CrossRefGoogle Scholar
Gibson, J.J. (1937). Adaptation with negative after-effect. Psychological Review 44, 222244.CrossRefGoogle Scholar
Golomb, J.D., Albrecht, A.R., Park, S. & Chun, M.M. (2011). Eye movements help link different views in scene-selective cortex. Cerebral Cortex 21, 20942102.CrossRefGoogle ScholarPubMed
Golomb, J.D., Chun, M.M. & Mazer, J.A. (2008). The native coordinate system of spatial attention is retinotopic. Journal of Neuroscience 28, 1065410662.CrossRefGoogle ScholarPubMed
Golomb, J.D. & Kanwisher, N. (2012). Higher level visual cortex represents retinotopic, not spatiotopic, object location. Cerebral Cortex 22, 27942810.CrossRefGoogle Scholar
Goossens, J., Dukelow, S.P., Menon, R.S., Vilis, T. & van den Berg, A.V. (2006). Representation of head-centric flow in the human motion complex. The Journal of Neuroscience 26, 56165627.CrossRefGoogle ScholarPubMed
Gordon, R.D., Vollmer, S.D. & Frankl, M.L. (2008). Object continuity and the transsaccadic representation of form. Perception and Psychophysics 70, 667679.CrossRefGoogle ScholarPubMed
Gottlieb, J. (2007). From thought to action: The parietal cortex as a bridge between perception, action, and cognition. Neuron 53, 916.CrossRefGoogle ScholarPubMed
Harrison, W.J., Mattingley, J.B. & Remington, R.W. (2013). Eye movement targets are released from visual crowding. Journal of Neuroscience 33, 29272933.CrossRefGoogle ScholarPubMed
Hayhoe, M., Lachter, J. & Feldman, J. (1991). Integration of form across saccadic eye movements. Perception 20, 393402.CrossRefGoogle ScholarPubMed
Hilchey, M.D., Klein, R.M., Satel, J. & Wang, Z. (2012). Oculomotor inhibition of return: How soon is it “recoded” into spatiotopic coordinates? Attention, Perception & Psychophysics 74, 11451153.CrossRefGoogle Scholar
Ilg, U.J., Schumann, S. & Thier, P. (2004). Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron 43, 145151.CrossRefGoogle ScholarPubMed
Inaba, N. & Kawano, K. (2014). Neurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements. Proceedings of the National Academy of Sciences USA 111, 78257830.CrossRefGoogle ScholarPubMed
Irwin, D.E. (1991). Information integration across saccadic eye movements. Cognitive Psychology 23, 420456.CrossRefGoogle ScholarPubMed
Jeffery, K.J., Jovalekic, A., Verriotis, M. & Hayman, R. (2013). Navigating in a three-dimensional world. Behavioral Brain Science 36, 523543.CrossRefGoogle Scholar
Jonikaitis, D. & Belopolsky, A.V. (2014). Target-distractor competition in the oculomotor system is spatiotopic. Journal of Neuroscience 34, 66876691.CrossRefGoogle ScholarPubMed
Knapen, T., Rolfs, M. & Cavanagh, P. (2009). The reference frame of the motion aftereffect is retinotopic. Journal of Vision 9(5), 16.1–6.CrossRefGoogle ScholarPubMed
Knops, A., Piazza, M., Sengupta, R., Eger, E. & Melcher, D. (2014). A shared, flexible neural map architecture reflects capacity limits in both visual short term memory and enumeration. The Journal of Neuroscience 34, 98579866.CrossRefGoogle ScholarPubMed
Kowler, E., Anderson, E., Dosher, B. & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research 35, 18971916.CrossRefGoogle ScholarPubMed
Lappe, M., Awater, H. & Krekelberg, B. (2000). Postsaccadic visual references generate presaccadic compression of space. Nature 403, 892895.CrossRefGoogle ScholarPubMed
Lin, Z. (2013). Object-centered representations support flexible exogenous visual attention across translation and reflection. Cognition 129, 221231.CrossRefGoogle ScholarPubMed
Lin, Z. & He, S. (2009). Seeing the invisible: The scope and limits of unconscious processing in binocular rivalry. Progress in Neurobiology 87, 195211.CrossRefGoogle ScholarPubMed
Lin, Z. & He, S. (2012). Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking. Journal of Vision 12, 24.CrossRefGoogle ScholarPubMed
Mathot, S. & Theeuwes, J. (2011). Visual stability. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 516527.CrossRefGoogle Scholar
Matin, L. & Pearce, D.G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movmements. Science 148, 14851487.CrossRefGoogle Scholar
Maus, G.W., Fischer, J. & Whitney, D. (2013). Motion-dependent representation of space in area MT+. Neuron 78, 554562.CrossRefGoogle ScholarPubMed
McKyton, A. & Zohary, E. (2007). Beyond retinotopic mapping: The spatial representation of objects in the human lateral occipital complex. Cerebral Cortex 17, 11641172.CrossRefGoogle ScholarPubMed
Medendorp, W.P., Goltz, H.C., Vilis, T. & Crawford, J.D. (2003). Gaze-centered updating of visual space in human parietal cortex. The Journal of Neuroscience 23, 62096214.CrossRefGoogle ScholarPubMed
Melcher, D. (2005). Spatiotopic transfer of visual-form adaptation across saccadic eye movements. Current Biology 15, 17451748.CrossRefGoogle ScholarPubMed
Melcher, D. (2007). Predictive remapping of visual features precedes saccadic eye movements. Nature Neuroscience 10, 903907.CrossRefGoogle ScholarPubMed
Melcher, D. (2009). Selective attention and the active remapping of object features in trans-saccadic perception. Vision Research 49, 12491255.CrossRefGoogle ScholarPubMed
Melcher, D. (2011). Visual stability. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 468475.CrossRefGoogle ScholarPubMed
Melcher, D. & Colby, C.L. (2008). Trans-saccadic perception. Trends in Cognitive Sciences 12, 466473.CrossRefGoogle ScholarPubMed
Melcher, D. & Fracasso, A. (2012). Remapping of the line motion illusion across eye movements. Experimental Brain Research 218, 503514.CrossRefGoogle ScholarPubMed
Melcher, D. & Morrone, M.C. (2003). Spatiotopic temporal integration of visual motion across saccadic eye movements. Nature Neuroscience 6, 877881.CrossRefGoogle ScholarPubMed
Melcher, D., Papathomas, T.V. & Vidnyanszky, Z. (2005). Implicit attentional selection of bound visual features. Neuron 46, 723729.CrossRefGoogle ScholarPubMed
Melcher, D. & Piazza, M. (2011). The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS One 6, e29296.CrossRefGoogle ScholarPubMed
Merriam, E.P. & Colby, C.L. (2005). Active vision in parietal and extrastriate cortex. Neuroscientist 11, 484493.CrossRefGoogle ScholarPubMed
Merriam, E.P., Gardner, J.L., Movshon, J.A. & Heeger, D.J. (2013). Modulation of visual responses by gaze direction in human visual cortex. The Journal of Neuroscience 33, 98799889.CrossRefGoogle ScholarPubMed
Merriam, E.P., Genovese, C.R., & Colby, C.L. (2003). Spatial updating in human parietal cortex. Neuron 39, 361373.CrossRefGoogle ScholarPubMed
Merriam, E.P., Genovese, C.R., & Colby, C.L. (2007). Remapping in human visual cortex. Journal of Neurophysiology 97, 17381755.CrossRefGoogle ScholarPubMed
Moore, C.M., Egeth, H., Berglan, L.R. & Luck, S.J. (1996). Are attentional dwell times inconsistent with serial visual search? Psychonomic Bulletin & Review 3, 360365.CrossRefGoogle ScholarPubMed
Morrone, M.C. (2014). Interaction between eye movements and vision: Perception during saccades. In The New Visual Neuroscience (2nd ed.), ed. Chalupa, J.S.W.L.M., pp. 947962. Boston: MIT Press.Google Scholar
Morrone, M.C., Ross, J. & Burr, D.C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. The Journal of Neuroscience 17, 79417953.CrossRefGoogle ScholarPubMed
Nakamura, K. & Colby, C.L. (2000). Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. Journal of Neurophysiology 84, 677692.CrossRefGoogle ScholarPubMed
Nakamura, K. & Colby, C.L. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proceedings of the National Academy of Sciences USA 99, 40264031.CrossRefGoogle ScholarPubMed
Nakashima, Y. & Sugita, Y. (2014). Surround-contingent tilt aftereffect. Journal of Vision 14, 5.CrossRefGoogle ScholarPubMed
Nishida, S., Watanabe, J., Kuriki, I. & Tokimoto, T. (2007). Human visual system integrates color signals along a motion trajectory. Current Biology 17, 366372.CrossRefGoogle ScholarPubMed
Oğmen, H., Otto, T. & Herzog, M.H. (2006). Perceptual grouping induces non-retinotopic feature attribution in human vision. Vision Research 46, 32343242.CrossRefGoogle ScholarPubMed
Ong, W.S. & Bisley, J.W. (2011). A lack of anticipatory remapping of retinotopic receptive fields in the middle temporal area. The Journal of Neuroscience 31, 1043210436.CrossRefGoogle ScholarPubMed
Ong, W.S., Hooshvar, N., Zhang, M. & Bisley, J.W. (2009). Psychophysical evidence for spatiotopic processing in area MT in a short-term memory for motion task. Journal of Neurophysiology 102, 24352440.CrossRefGoogle Scholar
Otto, T.U., Oğmen, H., Herzog, M.H. (2006). The flight path of the phoenix—The visible trace of invisible elements in human vision. Journal of Vision 6, 10791086.CrossRefGoogle ScholarPubMed
Otto, T.U., Oğmen, H. & Herzog, M.H. (2008). Assessing the microstructure of motion correspondences with non-retinotopic feature attribution. Journal of Vision 8, 16.1–15.CrossRefGoogle ScholarPubMed
Otto, T.U., Oğmen, H. & Herzog, M.H. (2009). Feature integration across space, time and orientation. Journal of Experimental Psychology: Human Perception & Performance 35, 16701686.Google ScholarPubMed
Otto, T.U., Oğmen, H. & Herzog, M.H. (2010). Perceptual learning in a nonretinotopic frame of reference. Psychological Science 21, 10581063.CrossRefGoogle Scholar
Parks, T. (1965). Post-retinal visual storage. American Journal of Psychology 78, 145147.CrossRefGoogle ScholarPubMed
Parks, N.A. & Corballis, P.M. (2008). Electrophysiological correlates of presaccadic remapping in humans. Psychophysiology 45, 776783.CrossRefGoogle ScholarPubMed
Parks, N.A. & Corballis, P.M. (2010). Human transsaccadic visual processing: Presaccadic remapping and postsaccadic updating. Neuropsychologia 48, 34513458.CrossRefGoogle ScholarPubMed
Pertzov, Y., Avidan, G. & Zohary, E. (2011). Multiple reference frames for saccadic planning in the human parietal cortex. Journal of Neuroscience 31, 10591068.CrossRefGoogle ScholarPubMed
Pooresmaeili, A., Cicchini, G., Morrone, M. & Burr, D. (2012). “Non-retinotopic processing” in Ternus motion displays modelled by spatio-temporal filters. Journal of Vision 12, 1274512758.CrossRefGoogle Scholar
Pouget, A., Fisher, S.A. & Sejnowski, T.J. (1993). Egocentric spatial representation in early vision. Journal of Cognitive Neuroscience 5, 150161.CrossRefGoogle Scholar
Prime, S.L., Niemeier, M. & Crawford, J.D. (2006). Transsaccadic integration of visual features in a line intersection task. Experimental Brain Research 169, 532548.CrossRefGoogle Scholar
Prime, S.L., Vesia, M. & Crawford, J.D. (2011). Cortical mechanisms for trans-saccadic memory and integration of multiple object features. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 540553.CrossRefGoogle ScholarPubMed
Przybyszewski, A.W., Kagan, I. & Snodderly, D.M. (2014). Primate area V1: Largest response gain for receptive fields in the straight-ahead direction. Neuroreport 25, 11091115.CrossRefGoogle ScholarPubMed
Rieger, J.W., Gruschow, M., Heinze, H-J., & Fendrich, R. (2007). The appearance of figures seen through a narrow aperture under free viewing conditions: Effects of spontaneous eye motions. Journal of Vision 7(6), 10.1–13.CrossRefGoogle ScholarPubMed
Ross, J. & Ma-Wyatt, A. (2004). Saccades actively maintain perceptual continuity. Nature Neuroscience 7, 6569.CrossRefGoogle ScholarPubMed
Ross, J., Morrone, M.C. & Burr, D.C. (1997). Compression of visual space before saccades. Nature 384, 598601.CrossRefGoogle Scholar
Sapir, A., Hayes, A., Henik, A., Danzinger, S. & Rafal, R. (2004). Parietal lobe lesions disrupt saccadic remapping of inhibitory location tagging. Journal of Cognitive Neuroscience 16, 503509.CrossRefGoogle ScholarPubMed
Schroeder, C., Wilson, D., Radman, T., Scharfman, H. & Lakatos, P. (2010). Dynamics of active sensing and perceptual selection. Current Opinion in Neurobiology 20, 172176.CrossRefGoogle ScholarPubMed
Seidel Malkinson, T., Mckyton, A. & Zohary, E. (2012). Motion adaptation reveals that the motion vector is represented in multiple coordinate frames. Journal of Vision 12, 30.CrossRefGoogle ScholarPubMed
Sereno, M.I. & Huang, R.S. (2006). A human parietal face area contains aligned head-centered visual and tactile maps. Nature Neuroscience 9, 13371343.CrossRefGoogle ScholarPubMed
Strappini, F., Pitzalis, S., Snyder, A.Z., Mcavoy, M.P., Sereno, M.I., Corbetta, M. & Shulman, G.L. (2014). Eye position modulates retinotopic responses in early visual areas: A bias for the straight-ahead direction. Brain Structure and Function. http://link.springer.com/article/10.1007%2Fs00429-014-0808-7.Google Scholar
Theeuwes, J., Godjin, R. & Pratt, J. (2004). A new estimation of the duration of attentional dwell time. Psychonomic Bulletin & Review 11, 6064.CrossRefGoogle ScholarPubMed
Tolias, A.S., Moore, T., Smirnakis, S.M., Tehovnik, E.J., Siapas, A.G. & Schiller, P.H. (2001). Eye movements modulate visual receptive fields of V4 neurons. Neuron 29, 757767.CrossRefGoogle ScholarPubMed
Tomko, D.L., Barbaro, N.M. & Ali, F.N. (1981). Effect of body tilt on receptive field orientation of simple visual cortical neurons in unanesthetized cats. Experimental Brain Research 43, 309314.Google ScholarPubMed
Trotter, Y. & Celebrini, S. (1999). Gaze direction controls response gain in primary visual-cortex neurons. Nature 398, 239242.CrossRefGoogle ScholarPubMed
Tse, P.U., Cavanagh, P. & Nakayama, K. (1998). The role of parsing in high-level motion processing. In High-level Motion Processing: Computational, Neurobiological, and Psychophysical Perspectives, eds. Watanabe, T., pp. 249266. Cambridge, MA: MIT Press.Google Scholar
Turi, M. & Burr, D.C. (2012). Spatiotopic perceptual maps in humans: Evidence from motion adaptation. Proceedings. Biological sciences / The Royal Society 279, 30913097.CrossRefGoogle ScholarPubMed
Umeno, M.M. & Goldberg, M.E. (1997). Spatial processing in the monkey frontal eye field. I. Predictive visual responses. Journal of Neurophysiology 78, 13731383.CrossRefGoogle ScholarPubMed
Van Eccelpoel, C., Germeys, F., De Graef, P. & Verfaillie, K. (2008). Coding of identity-diagnostic information in transsaccadic object perception. Journal of Vision 8, 116.CrossRefGoogle ScholarPubMed
van Koningsbruggen, M.G. & Buonocore, A. (2013). Mechanisms behind perisaccadic increase of perception. Journal of Neuroscience 33, 1132711328.CrossRefGoogle ScholarPubMed
Walker, M.F., Fitzgibbon, E.J. & Goldberg, M.E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. Journal of Neurophysiology 73, 19882003.CrossRefGoogle ScholarPubMed
Ward, R., Duncan, J. & Shapiro, K. (1997). Effects of similarity, difficulty, and nontarget presentation on the time course of visual attention. Perception & Psychophysics 59, 593600.CrossRefGoogle ScholarPubMed
Webster, M.A. (2011). Adaptation and visual coding. Journal of Vision 11(5), 3.CrossRefGoogle ScholarPubMed
Wenderoth, P. & Wiese, M. (2008). Retinotopic encoding of the direction aftereffect. Vision Research 48, 19491954.CrossRefGoogle ScholarPubMed
Wittenberg, M., Bremmer, F. & Wachtler, T. (2008). Perceptual evidence for saccadic updating of color stimuli. Journal of Vision 8, 9.1–9.CrossRefGoogle ScholarPubMed
Wurtz, R.H. (2008). Neuronal mechanisms of visual stability. Vision Research 48, 20702089.CrossRefGoogle ScholarPubMed
Wurtz, R., Joiner, W. & Berman, R. (2011). Neuronal mechanisms for visual stability: Progress and problems. Philosophical Transactions of the Royal Society of London B Biological Sciences 366, 492503.CrossRefGoogle ScholarPubMed
Yoshimoto, S., Uchida-Ota, M. & Takeuchi, T. (2014a). Effect of light level on the reference frames of visual motion processing. Journal of Vision 14(13), 6.CrossRefGoogle ScholarPubMed
Yoshimoto, S., Uchida-Ota, M., & Takeuchi, T. (2014b). The reference frame of visual motion priming depends on underlying motion mechanisms. Journal of Vision 14(1), 10.CrossRefGoogle ScholarPubMed
Zhang, E. & Li, W. (2010). Perceptual learning beyond retinotopic reference frame. Proceedings of the National Academy of Sciences 107, 1596915974.CrossRefGoogle ScholarPubMed
Zimmermann, E., Morrone, M.C., Fink, G. & Burr, D.C. (2013a). Spatiotopic neural representations develop slowly across saccades. Current Biology 23, 193194.CrossRefGoogle ScholarPubMed
Zimmermann, E., Morrone, M.C. & Burr, D.C. (2013b). Spatial position information accumulates steadily over time. Journal of Neuroscience 33, 1839618401.CrossRefGoogle ScholarPubMed
Zimmermann, E., Morrone, M.C. & Burr, D.C. (2014a). Buildup of spatial information over time and across eye-movements. Behavioral Brain Research 275, 281287.CrossRefGoogle ScholarPubMed
Zimmermann, E., Weidner, R. & Fink, G. (2014b). Spatiotopic representations emerge from remapped activity in early visual areas. Journal of Vision 14(10), 578.CrossRefGoogle Scholar
Zipser, D. & Andersen, R.A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679684.CrossRefGoogle ScholarPubMed
Zirnsak, M., Gerhards, R.G., Kiani, R., Lappe, M. & Hamker, F.H. (2011). Anticipatory saccade target processing and the presaccadic transfer of visual features. Journal of Neuroscience 31, 1788717891.CrossRefGoogle ScholarPubMed
Zirnsak, M., Steinmetz, N.A., Noudoost, B., Xu, K.Z. & Moore, T. (2014). Visual space is compressed in prefrontal cortex before eye movements. Nature 507, 504507.CrossRefGoogle ScholarPubMed
Zöllner, F. (1862). Über eine neue art anorthoskopischer zerrbilder. Annalen der Physik und Chemie 117, 477484.CrossRefGoogle Scholar