Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:31:07.108Z Has data issue: false hasContentIssue false

Immunocytochemical evidence for the presence of histamine and GABA in photoreceptors of the barnacle (Balanus nubilus)

Published online by Cambridge University Press:  02 June 2009

Joseph C. Callaway
Affiliation:
Department of Zoology, University of Washington, Seattle
Ann E. Stuart
Affiliation:
Departments of Physiology and Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill
John S. Edwards
Affiliation:
Department of Zoology, University of Washington, Seattle

Abstract

Biochemical evidence indicates that GABA and histamine may both be synthesized by barnacle photoreceptors (Koike & Tsuda, 1980; Timpe & Stuart, 1984; Callaway & Stuart, 1989b). We used antisera against GABA- and histamine-protein conjugates to determine whether the photoreceptors contain either or both of these antigens. Both antisera labeled all of the photoreceptors in each of the three ocelli. Histamine-like immunoreactivity was found throughout each photoreceptor cell but was most intense at their presynaptic terminals. Histamine-like immunoreactivity was blocked by preincubation of the antibody either with histamine or with a histamine-protein conjugate. GABA-like immunoreactivity was found in all parts of the photoreceptors including the cell body, axon, rhabdomeric dendrites, and presynaptic terminals. GABA-protein conjugates blocked the GABA-like labeling of the photoreceptors, while protein conjugates with histamine, L-glutamate, L-glutamine, β-alanine, and taurine did not. Histamine-like immunoreactivity in the supraesophageal ganglion was confined to the photoreceptor terminals and a second, loose plexus of endings in the main neuropil. GABA-like immunoreactivity, in contrast, was found in approximately twenty-five pairs of neurons of this ganglion. In the cirral nerves, which are expected to contain inhibitory motoneurons, unidentified axons also labeled with the GABA antiserum.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, C.H., Chen, M.C., Weiss, K.R. & Kupfermann, I. (1982). Ultrastructure of a histaminergic synapse in Aplysia. Brain Research 238, 205210.CrossRefGoogle ScholarPubMed
Battelle, B.-A., Calman, B.G., Grieco, F.D., Mleziva, M.B., Callaway, J.C. & Stuart, A.E. (1989). Histamine: a putative afferent neurotransmitter in Limulus eyes. Investigative Opthalmology and Visual Science (Suppl.) 30, 290.Google Scholar
Berkenbosch, F. & Steinbusch, H.W.M. (1987). Histamine immunostaining in the rat median eminence: an unexpected form of cross reactivity with LH-RH. Brain Research 405, 353357.CrossRefGoogle ScholarPubMed
Brown, H.M., Hagiwara, S., Koike, H. & Meech, R.M. (1970). Membrane properties of a barnacle photoreceptor examined by the voltage-clamp technique. Journal of Physiology (London) 208, 385413.CrossRefGoogle ScholarPubMed
Burd, G.D., Davis, B.J., Macrides, F., Grillo, M. & Margolis, F.L. (1982). Carnosine in the primary afferents of the olfactory system: an autoradiographic and biochemical study. Journal of Neuroscience 2, 244255.CrossRefGoogle ScholarPubMed
Callaway, J.C. & Edwards, J.S. (1987). GABA-like immunoreactivity in the photoreceptors and supraesophageal ganglion of the barnacle (Balanus nubilus). Society for Neuroscience Abstracts 13, 233.Google Scholar
Callaway, J.C. & Stuart, A.E. (1989 a). Comparison of the responses to light and to GABA of cells postsynaptic to barnacle photoreceptors (I-cells). Visual Neuroscience 3, 301310.CrossRefGoogle ScholarPubMed
Callaway, J.C. & Stuart, A.E. (1989 b). Biochemical and physiological evidence that histamine is the transmitter of barnacle photoreceptors. Visual Neuroscience 3, 311325.CrossRefGoogle ScholarPubMed
Callaway, J.C., Stuart, A.E. & Edwards, J.S. (1988). Immunocytochemical localization of histamine in the photoreceptors and segmental ganglia of the barnacle (Balanus nubilus). Society for Neuroscience Abstracts 14, 381.Google Scholar
Clark, J.V. & Dorsett, D.A. (1978). Anatomy and physiology of proprioreceptors in the cirri of Balanus hameri. Journal of Comparative Physiology 123, 229237.CrossRefGoogle Scholar
Datum, K.-H., Weiler, R. & Zettler, F. (1986). Immunocytochemical demonstration of γ-amino butyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system. Journal of Comparative Physiology 159, 241249.CrossRefGoogle Scholar
Davis, R.E. & Stuart, A.E. (1988). A persistent, TTX-sensitive sodium current in an invertebrate neuron with neurosecretory ultrastructure. Journal of Neuroscience 8, 39783991.CrossRefGoogle Scholar
Elias, M.S. & Evans, P.D. (1983). Histamine in the insect nervous system: distribution, synthesis, and metabolism. Journal of Neurochemistry 41, 562568.CrossRefGoogle ScholarPubMed
Emson, P.C., Burrows, M. & Fonnum, F. (1974). Levels of glutamate decarboxylase, choline acetyltransferase, and acetyl cholinesterase in identified neurons of the locust. Journal of Neurobiology 5, 3342.CrossRefGoogle Scholar
Engbretson, G.A., Anderson, K.J. & Wu, J-Y. (1988). GABA as a potential neurotransmitter in lizard photoreceptors: immunocyto-chemical and biochemical evidence. Journal of Comparative Neurology 278, 461471.CrossRefGoogle Scholar
Fogel, W.A. (1986). GABA and polyamine metabolism in peripheral tissues, in GABAergic Mechanisms in the Mammalian Periphery, ed. Erdo, S.L. & Bowery, N.G., pp. 3556. New York: Raven Press.Google Scholar
Gwilliam, G.F. (1965). The mechanism of the shadow reflex in Cirripedia, II: Photoreceptor cell response, second-order response, and motor cell output. Biological Bulletin 125, 470485.CrossRefGoogle Scholar
Gwilliam, G.F. (1987). Neurobiology of barnacles. In Barnacle Biology, ed. Southward, A.J., pp. 191211. Rotterdam: A.A. Balkema.Google Scholar
Gwilliam, G.F. & Cole, E.S. (1979). The morphology of the central nervous system of the barnacle, Semibalanus cariosus (Pallas). Journal of Morphology 159, 297310.CrossRefGoogle ScholarPubMed
Gwilliam, G.F. & Stuart, A.E.Characteristics of neurones projecting from the supraesophageal ganglion in the shadow reflex pathway of the barnacle. Journal of Experimental Biology (submitted).Google Scholar
Hardie, R.C. (1987). Is histamine a neurotransmitter in insect photoreceptors? Journal of Comparative Physiology 161, 201213.CrossRefGoogle ScholarPubMed
Hoskins, S.G., Homberg, U., Kingan, T.G., Christensen, T.A. & Hildebrand, J.G. (1986). Immunocytochemistry of GABA in the antennal lobes of the sphinx moth (Manduca sexta). Cell and Tissue Research 244, 243252.CrossRefGoogle ScholarPubMed
Hsu, S.M., Raine, L. & Fanger, H. (1981). Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. Journal of Histochemistry and Cytochemistry 29, 577580.CrossRefGoogle ScholarPubMed
Hudspeth, A.J. & Stuart, A.E. (1977). Morphology and responses to light of the somata, axons, and terminal regions of individual photoreceptors of the giant barnacle. Journal of Physiology (London) 272, 123.CrossRefGoogle ScholarPubMed
Ientile, R., Russo, P. & Macaione, S. (1986). Polyamine localization and biosynthesis in chemically fractionated rat retina. Journal of Neurochemistry 47, 13561360.CrossRefGoogle ScholarPubMed
Koike, H. (1983). Transmitter substance of barnacle photoreceptor. In The Physiology of Excitable Cells, ed. Liss, A.R., pp. 523534. New York: Alan R. Liss, Inc.Google Scholar
Koike, H. & Tsuda, K. (1980). Cellular synthesis and axonal transport of gamma-aminobutyric acid in a photoreceptor cell of the barnacle. Journal of Physiology (London) 305, 125138.CrossRefGoogle Scholar
Kravitz, E.A., Molinoff, P.B. & Hall, Z.W. (1965). A comparison of the enzymes and substrates of gamma-aminobutyric acid metabolism in lobster excitatory an inhibitory axons. Proceedings of the National Academy of Sciences of the U.S.A. 54, 778782.CrossRefGoogle ScholarPubMed
Kravitz, E.A. & Potter, D.D. (1965). A further study of the distribution of gamma-aminobutyric acid between excitatory and inhibitory axons of the lobster. Journal of Neurochemistry 12, 323328.CrossRefGoogle ScholarPubMed
Lewenstein, L.A. (1983). Propagating calcium spikes in identified cells in the supraesophageal ganglion of the giant barnacle. Biological Bulletin 165, 529.Google Scholar
McGeer, P.L., Eccles, J.C. & McGeer, E.G. (1987). Molecular Neurobiology of the Mammalian Brain, (Second Edition). New York: Plenum Press.CrossRefGoogle Scholar
Miller, A.M. & Schwartz, E.A. (1983). Evidence for the identification of synaptic transmitters released by photoreceptors of the toad retina. Journal of Physiology 334, 325349.CrossRefGoogle ScholarPubMed
Nässel, D.R., Holmqvist, M.H., Hardie, R.C., Hákanson, R. & Sundler, F. (1988). Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies Calliphora erythrocephala and Musca domestica. Cell and Tissue Research 253, 639646.CrossRefGoogle ScholarPubMed
Nishimura, Y., Schwarz, M.L. & Rakic, P. (1986). GABA and GAD immunoreactivity of photoreceptor terminals in primate retina. Nature (London) 320, 753756.CrossRefGoogle ScholarPubMed
Oertel, D. & Stuart, A.E. (1981). Transformation of signals by interneurons in the barnacle's visual pathway. Journal of Physiology (London) 311, 127146.CrossRefGoogle Scholar
Oland, L.A., French, K.A., Hayashi, J.H. & Stuart, A.E. (1983). The lateral visual pathway of the giant barnacle. Journal of Neurophysiology 47, 516527.CrossRefGoogle Scholar
Oland, L.A. & Stuart, A.E. (1986). Pattern of convergence of the receptors of the barnacle's three ocelli onto second-order cells. Journal of Neurophysiology 55, 882895.CrossRefGoogle Scholar
Panula, P., Yang, H.-Y.T. & Costa, E. (1984). Histamine-containing neurons in the rat hypothalamus. Proceedings of the National Academy of Sciences of the U.S.A. 81, 25722576.CrossRefGoogle ScholarPubMed
Panula, P., Häppölä, O., Airaksinen, M.S., Auvinen, S. & Virkamäki, A. (1988). Carbodiimide as a tissue fixative in histamine immunohistochemistry and its application in developmental neurobiology. Journal of Histochemistry and Cytochemistry 36, 259269.CrossRefGoogle ScholarPubMed
Pirvola, U., Tuomisto, L., Yamatodani, A. & Panula, P. (1988). Distribution of Histamine in the cockroach brain and visual system: an immunocytochemical and biochemical study. Journal of Comparative Neurology 276, 514526.CrossRefGoogle ScholarPubMed
Ribi, W.A. (1977). Fine structure of the first optic ganglion (lamina) of the cockroach (Periplaneta americana). Tissue and Cell 9, 5772.CrossRefGoogle ScholarPubMed
Ross, W.N., Stockbridge, L.L. & Stockbridge, N.L. (1986). Regional properties of calcium entry in barnacle neurons determined with arsenazo III and a photodiode array. Journal of Neuroscience 6, 11481159.CrossRefGoogle Scholar
Schnapp, B.J. & Stuart, A.E. (1983). Synaptic contacts between physiologically identified neurons in the visual system of the barnacle. Journal of Neuroscience 5, 11001115.CrossRefGoogle Scholar
Schwartz, J.H., Elste, A., Shapiro, E. & Gotoh, H. (1986). Biochemical and morphological correlates of transmitter type in C2, an identified histaminergic neuron in Aplysia. Journal of Comparative Neurology 245, 401421.CrossRefGoogle ScholarPubMed
Sternberger, L.A. (1979). Immunocytochemistry. London: Wiley.Google ScholarPubMed
Stuart, A.E. & Callaway, J.C. (1987). Physiological and immunocytochemical evidence that barnacle photoreceptors use GABA as a neurotransmitter. Investigative Ophthalmology and Visual Science (Suppl.) 28, 238.Google Scholar
Stuart, A.E. & Callaway, J.C. (1988). Histamine is synthesized by barnacle ocelli and affects second-order visual cells. Investigative Ophthalmology and Visual Science (Suppl.) 29, 223.Google Scholar
Takeda, N., Inagaki, S., Taguchi, Y., Oertel, W.H., Tohyama, M., Watanabe, T. & Wada, H. (1984). Immunohistochemical evidence for the coexistence of histidine decarboxylase-like and glutamate decarboxylase-like immunoreactivities in nerve cells of the magnocellular nucleus of the posterior hypothalamus of rat. Proceedings of the National Academy of Sciences of the U.S.A. 81, 76477650.CrossRefGoogle Scholar
Timpe, L.C. & Stuart, A.E. (1984). Is γ-aminobutyric acid the neurotransmitter of barnacle photoreceptors? Brain Research 307, 225231.CrossRefGoogle ScholarPubMed
Turner, J.D. & Cottrell, G.A. (1977). Properties of an identified histamine-containing neurone. Nature 267, 447448.CrossRefGoogle ScholarPubMed
Turner, J.D., Powell, B. & Cottrell, G.A. (1980). Morphology and ultrastructure of an identified histamine-containing neuron in the central nervous system of the pond snail (Lymnaea stagnalis L). Journal of Neurocytology 9, 114.CrossRefGoogle ScholarPubMed
Yamamoto, M.A-., Kiyama, H., Hayashi, H., Fukuia, H., Tohyami, M., Watanabe, T. & Wada, H. (1987). Demonstration of histaminergic neurons in horizontal cells of guinea pig retina. Brain Research 410, 269274.CrossRefGoogle Scholar