Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T15:53:38.904Z Has data issue: false hasContentIssue false

How robust is a neural circuit?

Published online by Cambridge University Press:  22 August 2007

PETER STERLING
Affiliation:
Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
MICHAEL FREED
Affiliation:
Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania

Abstract

Design in engineering begins with the problem of robustness—by what factor should intrinsic capacity exceed normal demand? Here we consider robustness for a neural circuit that crosses the retina from cones to ganglion cells. The circuit's task is to represent the visual scene at many successive stages, each time by modulating a stream of stochastic events: photoisomerizations, then transmitter quanta, then spikes. At early stages, the event rates are high to achieve some critical signal-to-noise ratio and temporal bandwidth, which together set the information rate. Then neural circuits concentrate the information and repackage it, so that nearly the same total information can be represented by modulating far lower event rates. This is important for spiking because of its high metabolic cost. Considering various measurements at the outer and inner retina, we conclude that the “safety factors” are about 2–10, similar to other tissues.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmad, K.M., Klug, K., Herr, S., Sterling, P. & Schein, S. (2003). Cell density ratios in a foveal patch in macaque retina. Visual Neuroscience 20, 189209.CrossRefGoogle Scholar
Alexander, R.M. (1996). Optima for Animals. Princeton, NJ: Princeton University Press.
Attwell, D. & Laughlin, S. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism 21, 11331145.CrossRefGoogle Scholar
Awatramani, G.B. & Slaughter, M.M. (2001). Intensity-dependent, rapid activation of presynaptic metabotropic glutamate receptors at a central synapse. Journal of Neuroscience 21, 741749.Google Scholar
Barnes, S., Merchant, V. & Mahmud, F. (1993). Modulation of transmission gain by protons at the photoreceptor output synapse. Proceedings of the National Academy of Sciences USA 90, 1008110085.CrossRefGoogle Scholar
Beutner, D., Voets, T., Neher, E. & Moser, T. (2001). Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29, 681690.CrossRefGoogle Scholar
Burkhardt, D.A. (2001). Light adaptation and contrast in the outer retina. Progress in Brain Research 131, 407418.CrossRefGoogle Scholar
Calkins, D.J., Schein, S., Tsukamoto, Y. & Sterling, P. (1994). M and L cones in Macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses. Nature 371, 7072.CrossRefGoogle Scholar
Calkins, D.J. & Sterling, P. (2007). Microcircuitry for two types of achromatic ganglion cell in primate fovea. Journal of Neuroscience 27, 26462653.CrossRefGoogle Scholar
Calkins, D.J., Tsukamoto, Y. & Sterling, P. (1996). Foveal cones form basal as well as invaginating contacts with diffuse ON bipolar cells. Vision Research 36, 33733381.CrossRefGoogle Scholar
Chklovskii, D.B., Schikorski, T. & Stevens, C.F. (2002). Wiring optimization in cortical circuits. Neuron 34, 341347.CrossRefGoogle Scholar
Choi, S.-Y., Borghuis, B., Rea, R., Levitan, E.S., Sterling, P. & Kramer, R.H. (2005). Encoding light intensity by the cone photoreceptor synapse. Neuron 48, 555562.CrossRefGoogle Scholar
Chun, M.-H., Grünert, U., Martin, P.R. & Wässle, H. (1996). Thesynaptic complex of cones in the fovea and in the periphery of the macaque monkey retina. Vision Research 36, 33833395.CrossRefGoogle Scholar
Cohen, E. & Sterling, P. (1990). Demonstration of cell types among cone bipolar neurons of cat retina. Philosophical Transactions of the Royal Society of London B 330, 305321.CrossRefGoogle Scholar
de Ruyter van Steveninck, R. & Laughlin, S.B. (1996). The rate of information transfer at graded-potential synapses. Nature 379, 642645.CrossRefGoogle Scholar
DeVries, S.H. (2000). Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847856.CrossRefGoogle Scholar
DeVries, S.H., Li, W. & Saszik, S. (2006). Parallel processing in two transmitter microenvironments at the cone photoreceptor synapse. Neuron 50, 735748.CrossRefGoogle Scholar
DeVries, S.H., Qi, X., Smith, R.G., Makous, W. & Sterling, P. (2002). Electrical coupling between mammalian cones. Current Biology 12, 19001907.CrossRefGoogle Scholar
Dhingra, N.K. & Smith, R.G. (2004). Spike generator limits efficiency of information transfer in a retinal ganglion cell. Journal of Neuroscience 24, 29142922.CrossRefGoogle Scholar
Diamond, J. (1993). Evolutionary physiology. In: The logic of life. New York: Oxford University Press.
Esfahani, P., Schein, S., Klug, K., Tsukamoto, Y. & Sterling, P. (1993). Characterization of L, M, and S cone pedicles in primate fovea. Society of Neuroscience 19, Abstract #493.15.Google Scholar
Freed, M.A. (2000a). Rate of quantal excitation to a retinal ganglion cell evoked by sensory input. Journal of Neurophysiology 83, 29562966.Google Scholar
Freed, M.A. (2000b). Parallel cone bipolar pathways to ganglion cell use different rates and amplitudes of quantal excitation. Journal of Neuroscience 20, 39563963.Google Scholar
Freed, M.A. (2005). Quantal encoding of information in a retinal ganglion cell. Journal of Neurophysiology 94, 10481056.CrossRefGoogle Scholar
Freed, M.A., Smith, R.G. & Sterling, P. (1992). Computational model of the on-alpha ganglion cell receptive field based on bipolar circuitry. Proceedings of the National Academy of Sciences USA 89, 236240.CrossRefGoogle Scholar
Freed, M.A., Smith, R.G. & Sterling, P. (2003). Timing of quantal release from the retinal bipolar terminal is regulated by a feedback circuit. Neuron 38, 89101.CrossRefGoogle Scholar
Freed, M.A. & Sterling, P. (1988). The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. Journal of Neuroscience 8, 23032320.Google Scholar
Haverkamp, S., Grünert, U. & Wässle, H. (2000). The cone pedicle, a complex synapse in the retina. Neuron 27, 8595.CrossRefGoogle Scholar
Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. (1994). Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513515.CrossRefGoogle Scholar
Heidelberger, R., Thoreson, W.B. & Witkovsky, P. (2005). Synaptic transmission at retinal ribbon synapses. Progress in Retinal and Eye Research 24, 682720.CrossRefGoogle Scholar
Holt, M., Cooke, A., Neef, A. & Lagnado, L. (2004). High mobility of vesicles supports continuous exocytosis at a ribbon synapse. Current Biology 14, 173183.CrossRefGoogle Scholar
Hopkins, J.M. & Boycott, B. (1997). The cone synapses of cone bipolar cells of primate retina. Journal of Neurocytology 26, 313325.CrossRefGoogle Scholar
Hopkins, J.M. & Boycott, B.B. (1995). Synapses between cones and diffuse bipolar cells of a primate retina. Journal of Neurocytology 24, 680694.CrossRefGoogle Scholar
Klug, K., Herr, S., Ngo, I.-T., Sterling, P. & Schein, S. (2003). Macaque retina contains an S-cone OFF midget pathway. Journal of Neuroscience 23, 98819887.Google Scholar
Koch, K., McLean, J., Berry, M., Sterling, P., Balasubramanian, V. & Freed, M.A. (2004). Efficiency of information transmission by retinal ganglion cells. Current Biology 14, 15231530.CrossRefGoogle Scholar
Koch, K., McLean, J., Segev, R., Freed, M.A., Berry, M.J.II., Balasubramanian, V. & Sterling, P. (2006). How much the eye tells the brain. Current Biology 16, 14281434.CrossRefGoogle Scholar
Koshland, D.E., Jr., Goldbeter, A. & Stock, J.B. (1982). Amplification and adaptation in regulatory and sensory systems. Science 217, 220225.CrossRefGoogle Scholar
Koulen, P., Kuhn, R., Wässle, H. & Brandstätter, J.H. (1999). Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor. Proceedings of the National Academy of Sciences USA 96, 99099914.CrossRefGoogle Scholar
Lagnado, L., Gomis, A. & Job, C. (1996). Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17, 957967.CrossRefGoogle Scholar
Laughlin, S. (1981). A simple coding procedure enhances a neuron's information capacity. Zeitschrift fur Naturforschung—Section C—Biosciences 36, 910912.Google Scholar
Laughlin, S.B. (1994). Matching coding, circuits, cells, and molecules to signals—general principles of retinal design in the fly's eye. Progress in Retinal and Eye Research 13, 165196.CrossRefGoogle Scholar
Laughlin, S.B. & Hardie, R.C. (1978). Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. Journal of Comparative Physiology 128, 319340.CrossRefGoogle Scholar
Lennie, P. (2003). The cost of cortical computation. Current Biology 13, 493497.CrossRefGoogle Scholar
Li, W. & DeVries, S.H. (2006). Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nature Neuroscience 9, 669675.CrossRefGoogle Scholar
Llobet, A., Beaumont, V. & Lagnado, L. (2003). Real-time measurement of exocytosis and endocytosis using interference of light. Neuron 40, 10751086.CrossRefGoogle Scholar
Lukasiewicz, P. & Shields, C.R. (1998). Different combinations of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses. Journal of Neurophysiology 79, 31573167.Google Scholar
Meister, M. & Berry, M.J. (1999). The neural code of the retina. Neuron 22, 435450.CrossRefGoogle Scholar
Morigiwa, K. & Vardi, N. (1999). Differential expression of ionotropic glutamate receptor subunits in the outer retina. Journal of Comparative Neurology 405, 173184.3.0.CO;2-L>CrossRefGoogle Scholar
Nelson, R. (1977). Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. Journal of Comparative Neurology 172, 109136.CrossRefGoogle Scholar
Neves, G. & Lagnado, L. (1999). The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells. Journal of Physiology 515, 181202.CrossRefGoogle Scholar
Raviola, E. (1976). Intercellular junctions in the outer plexiform layer of the retina. Investigative Ophthalmology 15, 881895.Google Scholar
Rea, R., Li, J., Dharia, A., Levitan, E.S., Sterling, P. & Kramer, R.H. (2004). Streamlined synaptic vesicle cycle in cone photoreceptor terminals. Neuron 41, 755766.CrossRefGoogle Scholar
Richards, W. (1981). A lightness scale from image intensity distributions. Applied Optics 21, 25692604.Google Scholar
Savage, G.L. & Banks, M.S. (1992). Scotopic visual efficiency: Constraints by optics, receptor properties, and rod pooling. Vision Research 32, 645656.CrossRefGoogle Scholar
Singer, J.H. & Diamond, J.S. (2006). Vesicle depletion and snaptic depression at a mammalian ribbon synapse. Journal of Neurophysiology 95, 31913198.CrossRefGoogle Scholar
Smith, R.G. & Sterling, P. (1990). Cone receptive field in cat retina computed from microcircuitry. Visual Neuroscience 5, 453461.CrossRefGoogle Scholar
Srinivasan, M.V., Laughlin, S.B. & Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society (London) B 216, 427459.CrossRefGoogle Scholar
Sterling, P. (2004). How retinal circuits optimize the transfer of visual information. In The Visual Neurosciences. Cambridge, MA: MIT Press.
Sterling, P. & Matthews, G. (2005). Structure and function of ribbon synapses. Trends in Neuroscience 28, 2029.CrossRefGoogle Scholar
Thoreson, W.B., Rabl, K., Townes-Anderson, E. & Heidelberger, R. (2004). A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42, 595605.CrossRefGoogle Scholar
Tsukamoto, Y., Morigiwa, K., Ueda, M. & Sterling, P. (2001). Microcircuits for night vision in mouse retina. Journal of Neuroscience 21, 86168623.Google Scholar
Vardi, N., Duvoisin, R.M., Wu, G. & Sterling, P. (2000). Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. Journal of Comparative Neurology 423, 402412.3.0.CO;2-E>CrossRefGoogle Scholar
von der Twer, T. & MacLeod, D.I.A. (2001). Optimal nonlinear codes for the perception of natural colors. Network 12, 395407.CrossRefGoogle Scholar
von Gersdorff, H. & Matthews, G. (1994). Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735739.CrossRefGoogle Scholar
von Gersdorff, H., Sakaba, T., Berglund, K. & Tachibana, M. (1998). Submillisecond kinetics of glutamate release from a sensory synapse. Neuron 21, 11771188.CrossRefGoogle Scholar
von Gersdorff, H., Vardi, E., Matthews, G. & Sterling, P. (1996). Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron 16, 12211227.CrossRefGoogle Scholar
Weibel, E.R. (2000). Symmorphosis. Cambridge, MA: Harvard University Press.
Zenisek, D., Steyer, J.A. & Almers, W. (2000). Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849854.Google Scholar
Zenisek, D., Steyer, J.A., Feldman, M.E. & Almers, W. (2002). A membrane marker leaves syanptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35, 10851097.CrossRefGoogle Scholar
Zhou, Z.Y., Wan, Q.F., Thakur, P. & Heidelberger, R. (2006). Capacitance measurements in the mouse rod bipolar cell identify a pool of releasable synaptic vesicles. Journal of Neurophysiology 96, 25392548.CrossRefGoogle Scholar