Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T15:53:32.001Z Has data issue: false hasContentIssue false

Cortical correlates of amblyopia

Published online by Cambridge University Press:  16 April 2018

LYNNE KIORPES*
Affiliation:
Center for Neural Science, New York University, New York, New York
NIGEL DAW
Affiliation:
Yale University School of Medicine, New Haven, Connecticut
*
*Address correspondence to: Lynne Kiorpes. E-mail: lk6@nyu.edu

Abstract

There are many levels of disorder in amblyopic vision, from basic acuity and contrast sensitivity loss to abnormal binocular vision and global perception of motion and form. Amblyopia treatment via patching to restore acuity often leaves other aspects of vision deficient. The source for these additional deficits is unclear. Neural correlates of poor binocular function and acuity loss are found in V1 and V2. However, they are generally not sufficient to account for behaviorally measured vision loss. This review summarizes the known cortical correlates of visual deficits found in association with amblyopia, particularly those relevant to binocular vision and higher-order visual processing, in striate and extrastriate cortex. Recommendations for future research address open questions on the role of suppression and oculomotor abnormalities in amblyopic vision, and underexplored mechanisms such as top-down influences on information transmission in the amblyopic brain.

Type
Perspective
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astle, A.T., McGraw, P.V. & Webb, B.S. (2011). Recovery of stereo acuity in adults with amblyopia. BMJ Case Reports, doi:10.1136/bcr.07.2010.3143.CrossRefGoogle ScholarPubMed
Atkinson, J., Anker, S., Nardini, M., Braddick, O., Hughes, C., Rae, S., Wattam-Bell, J. & Atkinson, A. (2002). Infant vision screening predicts failures on motor and cognitive tests up to school age. Strabismus 10, 187198.CrossRefGoogle ScholarPubMed
Bi, H., Zhang, B., Tao, X., Harwerth, R.S., Smith, E.L. & Chino, Y.M. (2011). Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cerebral Cortex, 21(9):20332045.Google Scholar
Chung, S.T.L., Kumar, G., Li, R.W. & Levi, D.M. (2015). Characteristics of fixational eye movements in amblyopia: Limitations on fixation stability and acuity? Vision Research 114, 8799.Google Scholar
Clavagnier, S., Dumoulin, S.O. & Hess, R.F. (2015). Is the cortical deficit in amblyopia due to reduced cortical magnification, loss of neural resolution, or neural disorganization? Journal of Neuroscience 35, 1474014755.CrossRefGoogle ScholarPubMed
Cottereau, B.R., McKee, S.P., Ales, J.M. & Norcia, A.M. (2012). Disparity-specific spatial interactions: Evidence from EEG source imaging. Journal of Neuroscience 32, 826840.Google Scholar
Cumming, B.G. & Parker, A.J. (1999). Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. Journal of Neuroscience 19, 56025618.Google Scholar
Daw, N.W. (2014). What is amblyopia? In Visual Development, pp. 123145. New York: Springer.Google Scholar
Ding, J. & Levi, D.M. (2011). Recovery of stereopsis through perceptual learning in human adults with abnormal binocular vision. Proceedings of the National Academy of Sciences 108, E733E741.CrossRefGoogle ScholarPubMed
El-Shamayleh, Y., Kiorpes, L., Kohn, A. & Movshon, J.A. (2010). Visual motion processing by neurons in area MT of macaque monkeys with experimental amblyopia. Journal of Neuroscience 30, 1219812209.CrossRefGoogle ScholarPubMed
Fredenburg, P. & Harwerth, R.S. (2001). The relative sensitivities of sensory and motor fusion to small binocular disparities. Vision Research 41, 19691979.CrossRefGoogle ScholarPubMed
Giaschi, D., Lo, R., Narasimhan, S., Lyons, C. & Wilcox, L.M. (2013). Sparing of coarse stereopsis in stereodeficient children with a history of amblyopia. Journal of Vision 13, 17. doi:10.1167/13.10.17CrossRefGoogle ScholarPubMed
Giaschi, D., Chapman, C., Meier, K., Narasimhan, S. & Regan, D. (2015). The effect of occlusion therapy on motion perception deficits in amblyopia. Vision Research 114, 122134.Google Scholar
Grant, S. & Moseley, M.J. (2011). Amblyopia and real-world visuomotor tasks. Strabismus 19, 119128.CrossRefGoogle ScholarPubMed
Hamm, L.M., Black, J., Dai, S. & Thompson, B. (2014). Global processing in amblyopia: A review. Frontiers in Psychology 5, 583. doi:10.3389/fpsyg.2014.00583CrossRefGoogle ScholarPubMed
Harrad, R., Sengpiel, F. & Blakemore, C. (1996). Physiology of suppression in strabismic amblyopia. British Journal of Ophthalmology 80, 373377.Google Scholar
Harwerth, R.S., Smith, E.L., Crawford, M.L.J. & von Noorden, G.K. (1997). Stereopsis and disparity vergence in monkeys with subnormal binocular vision. Vision Research 37, 483493.Google Scholar
Hensch, T.K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience 6, 877888.CrossRefGoogle ScholarPubMed
Higgins, K.E., Daugman, J.G. & Mansfield, R.J. (1982). Amblyopic contrast sensitivity: Insensitivity to unsteady fixation. Investigative Ophthalmology & Visual Science 23, 113120.Google Scholar
Hou, C., Kim, Y.J., Lai, X.J. & Verghese, P. (2016). Degraded attentional modulation of cortical neural populations in strabismic amblyopia. Journal of Vision 16, 16.Google Scholar
Hughes, A. (1972). Vergence in the cat. Vision Research 12, 19611994.Google Scholar
Joosse, M.V., Simonsz, H.J., Van Minderhout, H.M., De Jong, P.T.V.M., Noordzij, B. & Mulder, P.G.H. (1997). Quantitative perimetry under binocular viewing conditions in microstrabismus. Vision Research 37, 28012812.CrossRefGoogle ScholarPubMed
Joosse, M.V., Simonsz, H.J., Spekreijse, H., Mulder, P.G.H., van Minderhout, H.M. (2000). The optimal stimulus to elicit suppression in small-angle convergent strabismus. Strabismus 8, 233242.Google Scholar
Kelly, K.R., Felius, J., Ramachandran, S., John, B.A., Jost, R.M. & Birch, E.E. (2016). Congenitally impaired disparity vergence in children with infantile esotropia. Investigative Ophthalmology & Visual Science 57, 2545.CrossRefGoogle ScholarPubMed
Kenyon, R.V., Ciuffreda, K.J. & Stark, L. (1980). Dynamic vergence eye movements in strabismus and amblyopia: Symmetric vergence. Investigative Ophthalmology & Visual Science 19, 6074.Google Scholar
Kenyon, R.V., Ciuffreda, K.J. & Stark, L. (1981). Dynamic vergence eye movements in strabismus and amblyopia: Asymmetric vergence. British Journal of Ophthalmology 65, 167176.CrossRefGoogle ScholarPubMed
Kiorpes, L., Kiper, D.C., O’Keefe, L.P., Cavanaugh, J.R. & Movshon, J.A. (1998). Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. Journal of Neuroscience 18, 64116424.Google Scholar
Kiorpes, L., Pham, A. & Carrasco, M. (2013). Attention improves visual performance in amblyopic macaque monkeys. Journal of Vision 13, 469.CrossRefGoogle Scholar
Kozma, P. & Kiorpes, L. (2003). Contour integration in amblyopic monkeys. Visual Neuroscience 20, 577588.Google Scholar
Krug, K. & Parker, A.J. (2011). Neurons in dorsal visual area V5/MT signal relative disparity. Journal of Neuroscience 31, 1789217904.Google Scholar
Lerner, Y., Pianka, P., Azmon, B., Leiba, H., Stolovitch, C., Loewenstein, A., Harel, M., Hendler, T. & Malach, R. (2003). Area-specific amblyopic effects in human occipitotemporal object representations. Neuron 40, 10231029.Google Scholar
Levi, D.M., Yu, C., Kuai, S.G. & Rislove, E. (2007). Global contour processing in amblyopia. Vision Research 47, 512524.CrossRefGoogle ScholarPubMed
Levi, D.M., Knill, D.C. & Bavelier, D. (2015). Stereopsis and amblyopia: A mini-review. Vision Research 114, 1730.Google Scholar
McKee, S.P., Levi, D.M., Schor, C.M. & Movshon, J.A. (2016). Saccadic latency in amblyopia. Journal of Vision 16, 3.CrossRefGoogle ScholarPubMed
Montero, V.M. (1999). Amblyopia decreases activation of the corticogeniculate pathway and visual thalamic reticularis in attentive rats: A ‘focal attention’ hypothesis. Neuroscience 91, 805817.CrossRefGoogle ScholarPubMed
Mori, T., Matsuura, K., Zhang, B., Smith, E.L. & Chino, Y.M. (2002). Effects of the duration of early strabismus on the binocular responses of neurons in the monkey visual cortex (V1). Investigative Ophthalmology & Visual Science 43, 12621269.Google Scholar
Movshon, J.A., Eggers, H.M., Gizzi, M.S., Hendrickson, A.E., Kiorpes, L. & Boothe, R.G. (1987). Effects of early unilateral blur on the macaque’s visual system. III. Physiological observations. Journal of Neuroscience 7, 13401351.Google Scholar
Nakatsuka, C., Zhang, B., Watanabe, I., Zheng, J., Bi, H., Ganz, L., Smith, E.L., Harwerth, R.S. & Chino, Y.M. (2007). Effects of perceptual learning on local stereopsis and neuronal responses of V1 and V2 in prism-reared monkeys. Journal of Neurophysiology 97, 26122626.Google Scholar
Neri, P., Bridge, H. & Heeger, D.J. (2004). Stereoscopic processing of absolute and relative disparity in human visual cortex. Journal of Neurophysiology 92, 18801891.Google Scholar
Niechwiej-Szwedo, E., Goltz, H.C., Chandrakumar, M., Hirji, Z., Crawford, J.D. & Wong, A.M.F. (2011). Effects of anisometropic amblyopia on visuomotor behavior, Part 2: Visually guided reaching. Investigative Ophthalmology & Visual Science 52, 795.Google Scholar
Niechwiej-Szwedo, E., Kennedy, S.A., Colpa, L., Chandrakumar, M., Goltz, H.C. & Wong, A.M.F. (2012). Effects of induced monocular blur versus anisometropic amblyopia on saccades, reaching, and eye-hand coordination. Investigative Ophthalmology & Visual Science 53, 4354.CrossRefGoogle ScholarPubMed
Niechwiej-Szwedo, E., Goltz, H.C., Chandrakumar, M. & Wong, A.M.F. (2014). Effects of strabismic amblyopia on visuomotor behavior: Part II. Visually guided reaching. Investigative Ophthalmology & Visual Science 55, 3857.CrossRefGoogle ScholarPubMed
Niechwiej-Szwedo, E., Chin, J., Wolfe, P.J., Popovich, C. & Staines, W.R. (2016). Abnormal visual experience during development alters the early stages of visual-tactile integration. Behavioural Brain Research 304, 111119.CrossRefGoogle ScholarPubMed
Parker, A.J. & Cumming, B.G. (2001). Cortical mechanisms of binocular stereoscopic vision. In Progress in Brain Research, pp. 205216.Google Scholar
Rislove, E.M., Hall, E.C., Stavros, K.A. & Kiorpes, L. (2010). Scale-dependent loss of global form perception in strabismic amblyopia. Journal of Vision 10, 25. doi:10.1167/10.12.25Google Scholar
Roberts, M., Cymerman, R., Smith, R., Kiorpes, L. & Carrasco, M. (2016). Covert spatial attention is functionally intact in amblyopic human adults. Journal of Vision 16, 30 (e-pub).CrossRefGoogle ScholarPubMed
Schor, C.M. (1977). Visual stimuli for strabismic suppression. Perception 6, 583593.Google Scholar
Sengpiel, F. & Blakemore, C. (1996). The neural basis of suppression and amblyopia in strabismus. Eye 10, 250258.CrossRefGoogle ScholarPubMed
Sengpiel, F., Blakemore, C. & Harrad, R. (1995). Interocular suppression in the primary visual cortex: A possible neural basis of binocular rivalry. Vision Research 35, 179195.CrossRefGoogle ScholarPubMed
Shooner, C., Hallum, L.E., Kumbhani, R.D., Ziemba, C.M., Garcia-Marin, V., Kelly, J.G., Majaj, N.J., Movshon, J.A. & Kiorpes, L. (2015). Population representation of visual information in areas V1 and V2 of amblyopic macaques. Vision Research 114, 5667.Google Scholar
Sireteanu, R. & Fronius, M. (1981). Naso-temporal asymmetries in human amblyopia: Consequence of long-term interocular suppression. Vision Research 21, 10551063.Google Scholar
Sireteanu, R. & Fronius, M. (1989). Different patterns of retinal correspondence in the central and peripheral visual field of strabismics. Investigative Ophthalmology & Visual Science 30, 20232033.Google ScholarPubMed
Smith, E.L., Chino, Y.M., Ni, J., Cheng, H., Crawford, M.L.J. & Harwerth, R.S. (1997). Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision. Journal of Neurophysiology 78, 13531362.CrossRefGoogle ScholarPubMed
Stryker, M. & Blakemore, C. (1972). Saccadic and disjunctive eye movements in cats. Vision Research 12, 20052013.Google Scholar
Tao, X., Zhang, B., Shen, G., Wensveen, J., Smith, E.L., Nishimoto, S., Ohzawa, I. & Chino, Y.M. (2014). Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys. Journal of Neuroscience 34, 1384013854.Google Scholar
Thomas, O.M., Cumming, B.G. & Parker, A.J. (2002). A specialization for relative disparity in V2. Nature Neuroscience 5, 472478.Google Scholar
Umeda, K., Tanabe, S. & Fujita, I. (2007). Representation of stereoscopic depth based on relative disparity in macaque area V4. Journal of Neurophysiology 98, 241252.Google Scholar
Wallace, D.K., Lazar, E.L., Melia, M., Birch, E.E., Holmes, J.M., Hopkins, K.B., Kraker, R.T., Kulp, M.T., Pang, Y., Repka, M.Z., Tamkins, S.M. & Weise, K.K. (2011). Stereoacuity in children with anisometropic amblyopia. Journal of American Association for Pediatric Ophthalmology and Strabismus 15, 455461.Google Scholar
Zuidam, I. & Collewijn, H. (1979). Vergence eye movements of the rabbit in visuomotor behavior. Vision Research 19, 185194.Google Scholar