Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T17:37:25.888Z Has data issue: false hasContentIssue false

3H-adenosine uptake selectively labels rod horizontal cells in goldfish retina

Published online by Cambridge University Press:  02 June 2009

Keith M. Studholme
Affiliation:
Department of Neurobiology and Behavior, State University of New York, Stony Brook
Stephen Yazulla
Affiliation:
Department of Neurobiology and Behavior, State University of New York, Stony Brook

Abstract

There are four types of horizontal cell in the goldfish retina, three cone- and one rod-type. The neurotransmitter of only one type, the H1 (cone) horizontal cell, has been identified as GABA. 3H-adenosine uptake was examined as a possible marker for the other classes of horizontal cell. Isolated goldfish retinae were incubated in 3H-adenosine (10–40 μCi) in HEPES-buffered saline for 30 min, then fixed, embedded in plastic, and processed for light-microscopic autoradiography (ARG). For double-label immuno/ARG studies, l-μm-thick sections were processed for GABA postembed immunocytochemistry, then for ARG. 3H-adenosine uptake was localized to cone photoreceptors, presumed precursor cells in the proximal outer nuclear layer, and to a single, continuous row of horizontal cell bodies in the inner nuclear layer. No uptake was localized to the region of horizontal cell axon terminals. 3H-adenosine uptake did not colocalize with GABA-IR in H1 horizontal cells, but it did colocalize with adenosine deaminase immunoreactivity. It is concluded that 3H-adenosine uptake selectively labels rod horizontal cells in the goldfish retina based on position and staining pattern, which are similar to rod horizontal cells stained by Golgi or HRP injection methods. The use of 3H-adenosine uptake may provide a useful tool to study other properties of rod horizontal cells (i.e. development) as well as provide clues as to the transmitter used by these interneurons.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhondzadeh, S. & Stone, T.W. (1994). Interaction between adenosine and GABAA receptors on hippocampal neurones. Brain Research 665, 229236.CrossRefGoogle ScholarPubMed
Barnes, S. & Hille, B. (1989). Ionic channels of the inner segment of tiger salamander cone photoreceptors. Journal of General Physiology 94, 719743.CrossRefGoogle ScholarPubMed
Blazynski, C. & Perez, M.-T.R. (1992). Neuroregulatory functions of adenosine in the retina. Progress in Retinal Research 11, 293332.CrossRefGoogle Scholar
Edwards, F.A., Gibb, A.J. & Colquhoun, D. (1992). ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 503505.CrossRefGoogle ScholarPubMed
Ehinger, B. & Perez, M.T.R. (1984). Autoradiography of nucleoside uptake into the retina. Neurochemistry International 6, 369381.CrossRefGoogle ScholarPubMed
Gallego, A. (1986). Comparative studies on horizontal cells and a note on microglial cells. Progress in Retinal Research 5, 165206.CrossRefGoogle Scholar
Hoehn, K. & White, T.D. (1990). Glutamate-evoked release of endogenous adenosine from rat cortical synaptosomes is mediated by glutamate uptake and not by receptors. Journal of Neurochemistry 54, 17161724.CrossRefGoogle Scholar
Johns, P.A.R. (1982). The formation of photoreceptors in the growing retinas of larval and adult goldfish. Journal of Neuroscience 2, 179198.CrossRefGoogle Scholar
Johns, P.A.R. & Fernald, R.D. (1981). Genesis of rods in the retina of teleost fish. Nature 293, 141142.CrossRefGoogle ScholarPubMed
Jones, P.A. & Schechter, N. (1987). Distribution of specific intermediate-filament proteins in the goldfish retina. Journal of Comparative Neurology 266, 112121.CrossRefGoogle ScholarPubMed
Kock, J.-H. (1982). Neuronal addition and retinal expansion during growth of the crucian carp eye. Journal of Comparative Neurology 209, 264274.CrossRefGoogle ScholarPubMed
Lam, D.M.K., Lasater, E.M. & Naka, K.-I. (1978). γ-Aminobutyric acid: A neurotransmitter candidate for cone horizontal cells of the catfish retina. Proceedings of the National Academy of Sciences of the U.S.A. 75, 63106313.CrossRefGoogle ScholarPubMed
Lam, D.M.K. & Steinman, L. (1971). The uptake of [γ-3H] Aminobutyric acid in the goldfish retina. Proceedings of the National Academy of Sciences of the U.S.A. 68, 27772781.CrossRefGoogle ScholarPubMed
Lasater, E.M. & Lam, D.M.K. (1984). The identification and some functions of GABAergic neurons in the distal catfish retina. Vision Research 24, 497506.CrossRefGoogle ScholarPubMed
Linden, J. (1994). Purinergic Systems. In Basic Neurochemistry, ed. Siegel, G.J., Agranoff, B.W., Albers, R.W. & Molinoff, P.B., pp. 401416. New York: Raven Press.Google Scholar
Lucchi, R., Poli, A., Traversa, U. & Barnabei, O. (1994). Functional adenosine A1 receptors in goldfish brain: Regional distribution and inhibition of K+-evoked glutamate release from cerebellar slices. Neuroscience 58, 237243.CrossRefGoogle ScholarPubMed
Marc, R.E., Stell, W.K., Bok, D. & Lam, D.M.K. (1978). GABAergic pathways in the goldfish retina. Journal of Comparative Neurology 182, 221246.CrossRefGoogle ScholarPubMed
Marc, R.E., Liu, W.L.S., Kalloniatis, M., Raiguel, S.F. & Van Haesen-donck, E. (1990). Patterns of glutamate immunoreactivity in the goldfish retina. Journal of Neuroscience 10, 40064034.CrossRefGoogle ScholarPubMed
Marmarelis, P.Z. & Naka, K.-I. (1973). Non-linear analysis and synthesis of receptive-field responses in the catfish retina. III. Two-input white-noise analysis. Journal of Neurophysiology 36, 634648.CrossRefGoogle Scholar
Neal, M. & Cunningham, J. (1994). Modulation by endogenous ATP of the light-evoked release of ACh from retinal cholinergic neurones. British Journal of Pharmacology 113, 10851087.CrossRefGoogle ScholarPubMed
Peng, Y.-W. & Lam, D.M.-K. (1992). Organization and development of horizontal cells in the goldfish retina, II: Use of monoclonal antibody MH1. Visual Neuroscience 8, 231241.CrossRefGoogle ScholarPubMed
Perez, M.T.R., Ehinger, B., Lindström, K. & Fredholm, B.B. (1986). Release of endogenous and radioactive purines from the rabbit retina. Brain Research 398, 106112.CrossRefGoogle ScholarPubMed
Poli, A., Lucchi, R., Zottini, M. & Traversa, U. (1993). Adenosine A1 receptor-mediated inhibition of evoked glutamate release is coupled to calcium influx decrease in goldfish brain synaptosomes. Brain Research 620, 245250.CrossRefGoogle ScholarPubMed
Ramon, Y Cajal S. (1933). The Structure of the Retina (compiled and translated S.A. Thorpe & M. Glickstein). Springfield, Illinois: Charles C. Thomas, Co., 1972.Google Scholar
Somogyi, P., Hodgson, A.J., Smith, A.D., Nunzi, M.G., Gorio, A. & Wu, J.-Y. (1984). Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material. Journal of Neuroscience 4, 25902603.CrossRefGoogle ScholarPubMed
Sperlagh, B., Kittel, A., Lajtha, A. & Vizi, E.S. (1995). ATP acts as fast neurotransmitter in rat habenula: Neurochemical and enzymecytochemical evidence. Neuroscience 66, 915920.CrossRefGoogle ScholarPubMed
Stell, W.K. (1967). The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. American Journal of Anatomy 120, 401424.CrossRefGoogle Scholar
Stell, W.K. (1975). Horizontal cell axons and axon terminals in goldfish retina. Journal of Comparative Neurology 159, 503520.CrossRefGoogle ScholarPubMed
Stell, W.K., Lightfoot, D.O., Wheeler, T.G. & Leeper, H.F. (1975). Goldfish retina: Functional polarization of cone horizontal cell dendrites and synapses. Science 190, 989990.CrossRefGoogle ScholarPubMed
Stell, W.K. & Lightfoot, D.O. (1975). Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. Journal of Comparative Neurology 159, 473502.CrossRefGoogle ScholarPubMed
Sternberger, L.A. (1979). Immunocytochemistry. New York: John Wiley & Sons.Google ScholarPubMed
Tsukamoto, Y, Yamada, M. & Kaneko, A. (1987). Morphological and physiological studies of rod-driven horizontal cells with special reference to the question of whether they have axons and axon terminals. Journal of Comparative Neurology 255, 305316.CrossRefGoogle Scholar
Ulrich, D. & Huguenard, J.R. (1995). Purinergic inhibition of GABA and glutamate release in the thalamus: Implications for thalamic network activity. Neuron 15, 909918.CrossRefGoogle ScholarPubMed
Wenthold, R., Zemple, J., Parakkal, M.A., Reeks, K.A. & Altschuler, R.A. (1986). Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Research 380, 718.CrossRefGoogle ScholarPubMed
Werblin, F.S. & Dowling, J.E. (1969). Organization of the retina of the mudpuppy, II. Intracellular recording. Journal of Neurophysiology 32, 339355.CrossRefGoogle ScholarPubMed
Yang, C.Y & Yazulla, S. (1988). Localization of putative GABAergic neurons in the larval tiger salamander retina by immunocytochemical and autoradiographic methods. Journal of Comparative Neurology 277, 96108.CrossRefGoogle ScholarPubMed
Yazulla, S. (1986). GABAergic mechanisms in the retina. Progress in Retinal Research 5, 152.CrossRefGoogle Scholar
Yazulla, S. & Kleinschmidt, J. (1983). Carrier-mediated release of GABA from retinal horizontal cells. Brain Research 263, 6375.CrossRefGoogle ScholarPubMed