Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T20:19:27.525Z Has data issue: false hasContentIssue false

Directional Selection and Evolution of Polygenic Traits in Eastern Eurasia: Insights from Ancient DNA

Published online by Cambridge University Press:  30 January 2025

Davide Piffer*
Affiliation:
Ulster Institute for Social Research, London, UK
*
Corresponding Author: Davide Piffer; Email: pifferdavide@gmail.com
Get access

Abstract

This study explores directional selection on physical and psychosocial phenotypes in Eastern Eurasian populations, utilizing a dataset of 1245 ancient genomes. By analyzing polygenic scores (PGS) for traits including height, educational attainment (EA), IQ, autism, schizophrenia, and others, we observed significant temporal trends spanning the Holocene era. The results suggest positive selection for cognitive-related traits such as IQ, EA and autism spectrum disorder (ASD), alongside negative selection for anxiety and depression. The results for height were mixed and showed nonlinear relationships with Years Before Present (BP). These trends were partially mediated by genetic components linked to distinct ancestral populations. Regression models incorporating admixture, geography, and temporal variables were used to account for biases in population composition over time. Latitude showed a positive effect on ASD PGS, EA and height, while it had a negative effect on skin pigmentation scores. Additionally, latitude exhibited significant nonlinear effects on multiple phenotypes. The observed patterns highlight the influence of climate-mediated selection pressures on trait evolution. Spline regression revealed that several polygenic scores had nonlinear relationships with years BP. The findings provide evidence for complex evolutionary dynamics, with distinct selective pressures shaping phenotypic diversity across different timescales and environments.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, M., Ishigaki, K., Sakaue, S., Momozawa, Y., Horikoshi, M., Hirata, M., Matsuda, K., Ikegawa, S., Takahashi, A., Kanai, M., Suzuki, S., Matsui, D., Naito, M., Yamaji, T., Iwasaki, M., Sawada, N., Tanno, K., Sasaki, M., Hozawa, A., Minegishi, N., … Kamatani, Y. (2019). Characterizing rare and low-frequency height-associated variants in the Japanese population. Nature Communications, 10, 4393. https://doi.org/10.1038/s41467-019-12276-5 CrossRefGoogle ScholarPubMed
Alexander, D.H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 16551664. https://doi.org/10.1101/gr.094052.109 CrossRefGoogle ScholarPubMed
Allen, J. A. (1877). The influence of physical conditions in the genesis of species. Radical Review, 1, 108140.Google Scholar
Als, T. D., Kurki, M. I., Grove, J., Voloudakis, G., Therrien, K., Tasanko, E., Nielsen, T. T., Naamanka, J., Veerapen, K., Levey, D. F., Bendl, J., Bybjerg-Grauholm, J., Zeng, B., Demontis, D., Rosengren, A., Athanasiadis, G., Bækved-Hansen, M., Qvist, P., Bragi Walters, G., Thorgeirsson, T., … Børglum, A. D. (2023). Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nature Medicine, 29, 18321844. https://doi.org/10.1038/s41591-023-02352-1 CrossRefGoogle ScholarPubMed
Anglim, J., Dunlop, P. D., Wee, S., Horwood, S., Wood, J. K., & Marty, A. (2022). Personality and intelligence: A meta-analysis. Psychological Bulletin, 148, 301336. https://doi.org/10.1037/bul0000373 CrossRefGoogle Scholar
Bai, F., Liu, Y., Wangdue, S., Wang, T., He, W., Xi, L., Tsho, Y., Tsering, T., Cao, P., Dai, Q., Liu, F., Feng, X., Zhang, M., Ran, J., Ping, W., Payon, D., Mao, X., Tong, Y., Tsring, T., Chen, Z., … Fu, Q. (2024). Ancient genomes revealed the complex human interactions of the ancient western Tibetans. Current Biology, 34, 25942605.e7. https://doi.org/10.1016/j.cub.2024.04.068 CrossRefGoogle ScholarPubMed
Bergmann, C. (1847). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse [On the relationships of heat conservation in animals to their size]. Göttinger Studien, 3, 595708.Google Scholar
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4, 7. https://doi.org/10.1186/s13742-015-0047-8 CrossRefGoogle Scholar
Chang, C. C., Chow, C. C., Tellier, L. C., Purcell, S. M., & Lee, J. J. (2020). PLINK 2.0: Expanding the scope of genomic analyses. Preprint. Available at: https://www.cog-genomics.org/plink/2.0/.Google Scholar
Chen, J., He, G., Ren, Z., Wang, Q., Liu, Y., Zhang, H., Yang, M., Zhang, H., Ji, J., Zhao, J., Guo, J., Chen, J., Zhu, K., Yang, X., Wang, R., Ma, H., Tao, L., Liu, Y., Shen, Q., … Huang, J. (2022). Fine-scale population admixturelandscape of Tai–Kadai-speaking Maonan in Southwest China inferred from genome-wide SNP data. Frontiers in Genetics, 13, 815285. https://doi.org/10.3389/fgene.2022.815285 CrossRefGoogle ScholarPubMed
Chen, J., Zhang, H., Yang, M., Wang, R., Zhang, H., Ren, Z., Wang, Q., Liu, Y., Chen, J., Ji, J., Zhao, J., He, G., Guo, J., Zhu, K., Yang, X., Ma, H., Wang, C. C., & Huang, J. (2023). Genomic formation of Tibeto-Burman speaking populations in Guizhou, Southwest China. BMC Genomics, 24, 672. https://doi.org/10.1186/s12864-023-09767-7 CrossRefGoogle ScholarPubMed
Chen, T. T., Kim, J., Lam, M., Chuang, Y. F., Chiu, Y. L., Lin, S. C., Jung, S. H., Kim, B., Kim, S., Cho, C., Shim, I., Park, S., Ahn, Y., Okbay, A., Jang, H., Kim, H. J., Seo, S. W., Park, W. Y., Ge, T., Huang, H., … Won, H. H. (2024). Shared genetic architectures of educational attainment in East Asian and European populations. Nature Human Behaviour, 8, 562575. https://doi.org/10.1038/s41562-023-01781-9 CrossRefGoogle ScholarPubMed
Comes, A. L., Senner, F., Budde, M., Adorjan, K., Anderson-Schmidt, H., Andlauer, T. F. M., Gade, K., Hake, M., Heilbronner, U., Kalman, J. L., Reich-Erkelenz, D., Klöhn-Saghatolislam, F., Schaupp, S. K., Schulte, E. C., Juckel, G., Dannlowski, U., Schmauß, M., Zimmermann, J., Reimer, J., & Papiol, S. (2019). The genetic relationship between educational attainment and cognitive performance in major psychiatric disorders. Translational Psychiatry, 9, 210. https://doi.org/10.1038/s41398-019-0547-x CrossRefGoogle ScholarPubMed
Cooke, N. P., Mattiangeli, V., Cassidy, L. M., Okazaki, K., Stokes, C. A., Onbe, S., Hatakeyama, S., Machida, K., Kasai, K., Tomioka, N., Matsumoto, A., Ito, M., Kojima, Y., Bradley, D. G., Gakuhari, T., & Nakagome, S. (2021). Ancient genomics reveals tripartite origins of Japanese populations. Science Advances, 7, eabh2419. https://doi.org/10.1126/sciadv.abh2419 CrossRefGoogle ScholarPubMed
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10, giab008. http://samtools.github.io/bcftools/ CrossRefGoogle ScholarPubMed
Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., Hagenaars, S. P., Ritchie, S. J., Marioni, R. E., Fawns-Ritchie, C., Liewald, D. C. M., Okely, J. A., Ahola-Olli, A. V., Barnes, C. L. K., Bertram, L., Bis, J. C., Burdick, K. E., Christoforou, A., DeRosse, P., … Deary, I. J. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9, 2098. https://doi.org/10.1038/s41467-018-04362-x CrossRefGoogle ScholarPubMed
Deng, L., & Xu, S. (2017). Adaptation of human skin color in various populations. Hereditas, 155, 1. https://doi.org/10.1186/s41065-017-0036-2 CrossRefGoogle ScholarPubMed
European Nucleotide Archive. (2022). The European Nucleotide Archive. European Bioinformatics Institute (EMBL-EBI). https://www.ebi.ac.uk/ena Google Scholar
Flegontov, P., Altınışık, N.E., Changmai, P., Rohland, N., Mallick, S., Adamski, N., Bolnick, D. A., Broomandkhoshbacht, N., Candilio, F., Culleton, B. J., Flegontova, O., Friesen, T. M., Jeong, C., Harper, T. K., Keating, D., Kennett, D. J., Kim, A. M., Lamnidis, T. C., Lawson, A. M., … Schiffels, S. (2019). Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature, 570, 236240. https://doi.org/10.1038/s41586-019-1251-y CrossRefGoogle ScholarPubMed
Feng, Y. A., Chen, C. Y., Chen, T. T., Kuo, P. H., Hsu, Y. H., Yang, H. I., Chen, W. J., Su, M. W., Chu, H. W., Shen, C. Y., Ge, T., Huang, H., & Lin, Y. F. (2022). Taiwan Biobank: A rich biomedical research database of the Taiwanese population. Cell Genomics, 2, 100197. https://doi.org/10.1016/j.xgen.2022.100197 CrossRefGoogle ScholarPubMed
Friligkou, E., Løkhammer, S., Cabrera-Mendoza, B., Shen, J., He, J., Deiana, G., Zanoaga, M. D., Asgel, Z., Pilcher, A., Di Lascio, L., Makharashvili, A., Koller, D., Tylee, D. S., Pathak, G. A., & Polimanti, R. (2024). Gene discovery and biological insights into anxiety disorders from a large-scale multi-ancestry genome-wide association study. Nature Genetics, 56, 20362045. https://doi.org/10.1038/s41588-024-01908-2 CrossRefGoogle ScholarPubMed
Gelabert, P., Blazyte, A., Chang, Y., Fernandes, D. M., Jeon, S., Hong, J. G., Yoon, J., Ko, Y., Oberreiter, V., Cheronet, O., Özdoğan, K. T., Sawyer, S., Yang, S., Greytak, E. M., Choi, H., Kim, J., Kim, J. I., Jeong, C., Bae, K., Bhak, J., … Pinhasi, R. (2022). Northeastern Asian and Jomon-related genetic structure in the Three Kingdoms period of Gimhae, Korea. Current Biology, 32, 32323244.e6. https://doi.org/10.1016/j.cub.2022.06.004 CrossRefGoogle ScholarPubMed
Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Awashti, S., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., Churchhouse, C., … Børglum, A. D. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51, 431444. https://doi.org/10.1038/s41588-019-0344-8 CrossRefGoogle ScholarPubMed
Guo, J., He, H., Xie, G., Tao, L., Mai, X., Zhu, K., Qin, Q., Yang, X., Xie, Y., Wang, R., Ma, H., Zhao, J., Li, D., Gong, S., & Wang, C. C. (2024). Genetic affinity of cave burial and Hmong-Mien populations in Guangxi inferred from ancient genomes. Archaeological and Anthropological Sciences, 16, 121. https://doi.org/10.1007/s12520-024-02033-1 CrossRefGoogle Scholar
Hill, W. D., Davies, G., CHARGE Cognitive Working Group, Liewald, D. C., McIntosh, A. M., & Deary, I. J. (2016). Age-dependent pleiotropy between general cognitive function and major psychiatric disorders. Biological Psychiatry, 80, 266273. https://doi.org/10.1016/j.biopsych.2015.07.025 CrossRefGoogle ScholarPubMed
Jeong, C., Witonsky, D. B., Basnyat, B., Neupane, M., Beall, C. M., Childs, G., Craig, S. R., Novembre, J., & Di Rienzo, A. (2018). Detecting past and ongoing natural selection among ethnically Tibetan women at high altitude in Nepal. PLoS Genetics, 14, e1007650. https://doi.org/10.1371/journal.pgen.1007650 CrossRefGoogle ScholarPubMed
Jeong, C., Wang, K., Wilkin, S., Taylor, W. T. T., Miller, B. K., Bemmann, J. H., Stahl, R., Chiovelli, C., Knolle, F., Ulziibayar, S., Khatanbaatar, D., Erdenebaatar, D., Erdenebat, U., Ochir, A., Ankhsanaa, G., Vanchigdash, C., Ochir, B., Munkhbayar, C., Tumen, D., Kovalev, A., … Warinner, C. (2020). A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell, 183, 890904.e29. https://doi.org/10.1016/j.cell.2020.10.015 CrossRefGoogle ScholarPubMed
Kim, B., Kim, D. S., Shin, J. G., Leem, S., Cho, M., Kim, H., Gu, K. N., Seo, J. Y., You, S. W., Martin, A. R., Park, S. G., Kim, Y., Jeong, C., Kang, N. G., & Won, H. H. (2024). Mapping and annotating genomic loci to prioritize genes and implicate distinct polygenic adaptations for skin color. Nature Communications, 15, 4874. https://doi.org/10.1038/s41467-024-49031-4 CrossRefGoogle ScholarPubMed
Kim, Y., Han, B. G., & KoGES Group. (2017). Cohort profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. International Journal of Epidemiology, 46, e20. https://doi.org/10.1093/ije/dyv316 CrossRefGoogle ScholarPubMed
Kuijpers, Y., Domínguez-Andrés, J., Bakker, O. B., Gupta, M. K., Grasshoff, M., Xu, C. J., Joosten, L. A. B., Bertranpetit, J., Netea, M. G., & Li, Y. (2022). Evolutionary trajectories of complex traits in European populations of modern humans. Frontiers in Genetics, 13, 833190. https://doi.org/10.3389/fgene.2022.833190 CrossRefGoogle ScholarPubMed
Kumar, V., Wang, W., Zhang, J., Wang, Y., Ruan, Q., Yu, J., Wu, X., Hu, X., Wu, X., Guo, W., Wang, B., Niyazi, A., Lv, E., Tang, Z., Cao, P., Liu, F., Dai, Q., Yang, R., Feng, X., Ping, W., … Fu, Q. (2022). Bronze and Iron Age population movements underlie Xinjiang population history. Science, 376, 6269. https://doi.org/10.1126/science.abk1534 CrossRefGoogle ScholarPubMed
Lam, M., Trampush, J. W., Yu, J., Knowles, E., Davies, G., Liewald, D. C., Starr, J. M., Djurovic, S., Melle, I., Sundet, K., Christoforou, A., Reinvang, I., DeRosse, P., Lundervold, A. J., Steen, V. M., Espeseth, T., Räikkönen, K., Widen, E., Palotie, A., & Lencz, T. (2017). Large-scale cognitive GWAS meta-analysis reveals tissue-specific neural expression and potential nootropic drug targets. Cell Reports, 21, 25972613. https://doi.org/10.1016/j.celrep.2017.06.066 CrossRefGoogle ScholarPubMed
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Karlsson Linnér, R., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., Timshel, P. N., Walters, R. K., Willoughby, E. A., Yengo, L., … Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50, 11121121. https://doi.org/10.1038/s41588-018-0147-3 CrossRefGoogle ScholarPubMed
Lee, J., Miller, B. K., Bayarsaikhan, J., Johannesson, E., Ventresca Miller, A., Warinner, C., & Jeong, C. (2023). Genetic population structure of the Xiongnu Empire at imperial and local scales. Science Advances, 9, eadf3904. https://doi.org/10.1126/sciadv.adf3904 CrossRefGoogle ScholarPubMed
Lee, J., Sato, T., Tajima, A., Amgalantugs, T., Tsogtbaatar, B., Nakagome, S., Miyake, T., Shiraishi, N., Jeong, C., & Gakuhari, T. (2024). Medieval genomes from eastern Mongolia share a stable genetic profile over a millennium. Human Population Genetics and Genomics, 4, 0004. https://doi.org/10.47248/hpgg2404010004 Google Scholar
Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D. C., Starr, J. M., Djurovic, S., Melle, I., Sundet, K., Christoforou, A., Reinvang, I., Mukherjee, S., DeRosse, P., Lundervold, A., Steen, V. M., John, M., Espeseth, T., Räikkönen, K., Widen, E., & Malhotra, A. K. (2014). Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: A report from the Cognitive Genomics Consortium (COGENT). Molecular Psychiatry, 19, 168174. https://doi.org/10.1038/mp.2013.57 CrossRefGoogle Scholar
Li, S., Wang, R., Ma, H., Tu, Z., Qiu, L., Chen, H., Jiang, L., Geng, Y., Liu, H., Wang, J., Shen, Q., Jin, L., Li, C., Wang, C. C., & Wei, X. (2024). Ancient genomic time transect unravels the population dynamics of Neolithic middle Yellow River farmers. Science Bulletin. Advance online publication. https://doi.org/10.1016/j.scib.2024.09.002 Google ScholarPubMed
Liu, C. C., Witonsky, D., Gosling, A., Lee, J. H., Ringbauer, H., Hagan, R., Patel, N., Stahl, R., Novembre, J., Aldenderfer, M., Warinner, C., Di Rienzo, A., & Jeong, C. (2022). Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nature Communications, 13, 1203. https://doi.org/10.1038/s41467-022-28827-2 CrossRefGoogle ScholarPubMed
Lu, G., Hu, Y., Yang, Z., Zhang, Y., Lu, S., Gong, S, Li, T., Shen, Y., Zhang, S., & Zhuang, H. (2022). Geographic latitude and human height: Statistical analysis and case studies from China. Arabian Journal of Geosciences, 15, 335. https://doi.org/10.1007/s12517-021-09335-x;CrossRefGoogle Scholar
Lucock, M. D. (2023). The evolution of human skin pigmentation: A changing medley of vitamins, genetic variability, and UV radiation during human expansion. American Journal of Biological Anthropology, 180, 252271. https://doi.org/10.1002/ajpa.24564 CrossRefGoogle ScholarPubMed
Lynn, R., & Vanhanen, T. (2012). National IQs: A review of their educational, cognitive, economic, political, demographic, sociological, epidemiological, geographic and climatic correlates. Intelligence, 40, 226234. https://doi.org/10.1016/j.intell.2011.11.004 CrossRefGoogle Scholar
Ma, H., Zhou, Y., Wang, R., Yan, F., Chen, H., Qiu, L., Zhao, J., Jin, L., & Wang, C. C. (2024). Ancient genomes shed light on the long-term genetic stability in the Central Plain of China. Science Bulletin. Advance online publication. https://doi.org/10.1016/j.scib.2024.07.024 CrossRefGoogle ScholarPubMed
Mao, X., Zhang, H., Qiao, S., Liu, Y., Chang, F., Xie, P., Zhang, M., Wang, T., Li, M., Cao, P., Yang, R., Liu, F., Dai, Q., Feng, X., Ping, W., Lei, C., Olsen, J. W., Bennett, E. A., & Fu, Q. (2021). The deep population history of northern East Asia from the Late Pleistocene to the Holocene. Cell, 184, 32563266.e13. https://doi.org/10.1016/j.cell.2021.04.040 CrossRefGoogle ScholarPubMed
Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., Daly, M. J., Bustamante, C. D., & Kenny, E. E. (2017). Human demographic history impacts genetic risk prediction across diverse populations. American Journal of Human Genetics, 100, 635649. https://doi.org/10.1016/j.ajhg.2017.03.004 CrossRefGoogle ScholarPubMed
Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A., Harney, E., Stewardson, K., Fernandes, D., Novak, M., Sirak, K., Gamba, C., Jones, E. R., Llamas, B., Dryomov, S., Pickrell, J., Arsuaga, J. L., de Castro, J. M., Carbonell, E., Gerritsen, F., … Reich, D. (2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528, 499503. https://doi.org/10.1038/nature16152 CrossRefGoogle ScholarPubMed
McColl, H., Racimo, F., Vinner, L., Demeter, F., Gakuhari, T., Moreno-Mayar, J. V., van Driem, G., Gram Wilken, U., Seguin-Orlando, A., de la Fuente Castro, C., Wasef, S., Shoocongdej, R., Souksavatdy, V., Sayavongkhamdy, T., Saidin, M. M., Allentoft, M. E., Sato, T., Malaspinas, A. S., Aghakhanian, F. A., Korneliussen, T., … Willerslev, E. (2018). The prehistoric peopling of Southeast Asia. Science, 361, 8892. https://doi.org/10.1126/science.aat3628 CrossRefGoogle ScholarPubMed
National Genomics Data Center, & Partners. (2017). The Genome Sequence Archive. China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences. https://ngdc.cncb.ac.cn/gsa-human Google Scholar
NCD Risk Factor Collaboration (NCD-RisC). (2020). Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: A pooled analysis of 2181 population-based studies with 65 million participants. Lancet, 396, 15111524. https://doi.org/10.1016/S0140-6736(20)31859-6 CrossRefGoogle Scholar
Nesse, R. M. (2001). The smoke detector principle. Natural selection and the regulation of defensive responses. Annals of the New York Academy of Sciences, 935, 7585.CrossRefGoogle ScholarPubMed
Ning, C., Li, T., Wang, K., Zhang, F., Li, T., Wu, X., Gao, S., Zhang, Q., Zhang, H., Hudson, M. J., Dong, G., Wu, S., Fang, Y., Liu, C., Feng, C., Li, W., Han, T., Li, R., Wei, J., Zhu, Y., … Cui, Y. (2020). Ancient genomes from northern China suggest links between subsistence changes and human migration. Nature Communications, 11, 2700. https://doi.org/10.1038/s41467-020-16557-2 CrossRefGoogle ScholarPubMed
Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y., Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E., Oskarsson, S., Hayward, C., Campbell, A., Porteous, D. J., … Young, A. I. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54, 437449. https://doi.org/10.1038/s41588-022-01016-z CrossRefGoogle ScholarPubMed
1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526, 6874. https://doi.org/10.1038/nature15393 CrossRefGoogle Scholar
Piffer, D. (2015). A review of intelligence GWAS hits: Their relationship to country IQ and the issue of spatial autocorrelation. Intelligence, 53, 4350. https://doi.org/10.1016/j.intell.2015.08.008 CrossRefGoogle Scholar
Piffer, D. (2019). Evidence for recent polygenic selection on educational attainment and intelligence inferred from GWAS hits: A replication of previous findings using recent data. Psych, 1, 5575. https://doi.org/10.3390/psych1010005 CrossRefGoogle Scholar
Piffer, D., & Kirkegaard, E. O. W. (2024a). Evolutionary trends of polygenic scores in European populations from the Paleolithic to modern times. Twin Research and Human Genetics, 27, 3049. https://doi.org/10.1017/thg.2024.8 CrossRefGoogle ScholarPubMed
Piffer, D., & Kirkegaard, E. O. W. (2024b). Predictive accuracy of polygenic scores from European GWAS among Chinese provinces. Mankind Quarterly, 65, 5871. https://doi.org/10.46469/mq.2024.65.1.6 CrossRefGoogle Scholar
Piffer, D., & Kirkegaard, E. (2024c). Polygenic selection and environmental influence on adult body height: Genetic and living standard contributions across diverse populations. Twin Research and Human Genetics, 27, 265–282. https://doi.org/10.1017/thg.2024.43 CrossRefGoogle Scholar
Rasmussen, M., Li, Y., Lindgreen, S., Pedersen, J. S., Albrechtsen, A., Moltke, I., Metspalu, M., Metspalu, E., Kivisild, T., Gupta, R., Bertalan, M., Nielsen, K., Gilbert, M. T., Wang, Y., Raghavan, M., Campos, P. F., Kamp, H. M., Wilson, A. S., Gledhill, A., Tridico, S., … Willerslev, E. (2010). Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature, 463, 757762. https://doi.org/10.1038/nature08835 CrossRefGoogle ScholarPubMed
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Google Scholar
Rubinacci, S., Hofmeister, R. J., Sousa da Mota, B., & Delaneau, O. (2023). Imputation of low-coverage sequencing data from 150,119 UK Biobank genomes. Nature Genetics, 55, 10881090. https://doi.org/10.1038/s41588-023-01438-3 CrossRefGoogle ScholarPubMed
Shen, Q., Wu, Z., Zan, J., Yang, X., Guo, J., Ji, Z., Wang, B., Liu, Y., Mao, X., Wang, X., Zou, X., Zhou, H., Peng, Y., Ma, H., He, H., Bai, T., Xu, M., Wen, S., Jin, L., Zhang, Q., … Wang, C.-C. (2024). Ancient genomes illuminate the demographic history of Shandong over the past two millennia. Journal of Genetics and Genomics. Advance online publication. https://doi.org/10.1016/j.jgg.2024.07.008 CrossRefGoogle ScholarPubMed
Sikora, M., Pitulko, V. V., Sousa, V. C., Allentoft, M. E., Vinner, L., Rasmussen, S., Margaryan, A., de Barros Damgaard, P., de la Fuente, C., Renaud, G., Yang, M. A., Fu, Q., Dupanloup, I., Giampoudakis, K., Nogués-Bravo, D., Rahbek, C., Kroonen, G., Peyrot, M., McColl, H., Vasilyev, S. V., … Willerslev, E. (2019). The population history of northeastern Siberia since the Pleistocene. Nature, 570, 182188. https://doi.org/10.1038/s41586-019-1279-z CrossRefGoogle ScholarPubMed
Smeland, O. B., Frei, O., Kauppi, K., Hill, W. D., Li, W., Wang, Y., Krull, F., Bettella, F., Eriksen, J. A., Witoelar, A., Davies, G., Fan, C. C., Thompson, W. K., Lam, M., Lencz, T., Chen, C. H., Ueland, T., Jönsson, E. G., Djurovic, S., Andreassen, O. A.; NeuroCHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Cognitive Working Group. (2017). Identification of genetic loci jointly influencing schizophrenia risk and the cognitive traits of verbal-numerical reasoning, reaction time, and general cognitive function. JAMA Psychiatry, 74, 10651075. https://doi.org/10.1001/jamapsychiatry.2017.2966 CrossRefGoogle ScholarPubMed
Taliun, D., Harris, D. N., Kessler, M. D., Carlson, J., Szpiech, Z. A., Torres, R., Taliun, S. A. G., Corvelo, A., Gogarten, S. M., Kang, H. M., Pitsillides, A. N., LeFaive, J., Lee, S. B., Tian, X., Browning, B. L., Das, S., Emde, A. K., Clarke, W. E., Loesch, D. P., … Abecasis, G. R. (2021). Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature, 590, 290299. https://doi.org/10.1038/s41586-021-03205-y CrossRefGoogle Scholar
Tan, T., Jayashankar, H., Guan, J., Nehzati, S. M., Mir, M., Bennett, M., Agerbo, E., Ahlskog, R., Pinto de Andrade Anapaz, V., Åsvold, B. O., Benonisdottir, S., Bhatta, L., Boomsma, D. I., Brumpton, B., Campbell, A., Chabris, C. F., Cheesman, R., Chen, Z., China Kadoorie Biobank Collaborative Group,Young, A. S. (2024). Family-GWAS reveals effects of environment and mating on genetic associations. medRxiv. https://doi.org/10.1101/2024.10.01.24314703 Google Scholar
Trubetskoy, V., Pardiñas, A.F., Qi, T., Panagiotaropoulou, G, Awasthi, S, Bigdeli, T. B., Bryois, J., Chen, C. Y., Dennison, C. A., Hall, L. S., Lam, M., Watanabe, K., Frei, O., Ge, T., Harwood, J. C., Koopmans, F., Magnusson, S., Richards, A. L., Sidorenko, J., … Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 604, 502508. https://doi.org/10.1038/s41586-022-04434-5.CrossRefGoogle ScholarPubMed
Wang, T., Wang, W., Xie, G., Li, Z., Fan, X., Yang, Q., Wu, X., Cao, P., Liu, Y., Yang, R., Liu, F., Dai, Q., Feng, X., Wu, X., Qin, L., Li, F., Ping, W., Zhang, L., Zhang, M., Liu, Y., … Fu, Q. (2021). Human population history at the crossroads of East and Southeast Asia since 11,000 years ago. Cell, 184, 38293841.e21. https://doi.org/10.1016/j.cell.2021.05.018 CrossRefGoogle Scholar
Wang, C. C., Yeh, H. Y., Popov, A. N., Zhang, H. Q., Matsumura, H., Sirak, K., Cheronet, O., Kovalev, A., Rohland, N., Kim, A. M., Mallick, S., Bernardos, R., Tumen, D., Zhao, J., Liu, Y. C., Liu, J. Y., Mah, M., Wang, K., Zhang, Z., Adamski, N., … Reich, D. (2021). Genomic insights into the formation of human populations in East Asia. Nature, 591, 413419. https://doi.org/10.1038/s41586-021-03336-2 CrossRefGoogle ScholarPubMed
Wang, H., Yang, M. A., Wangdue, S., Lu, H., Chen, H., Li, L., Dong, G., Tsring, T., Yuan, H., He, W., Ding, M., Wu, X., Li, S., Tashi, N., Yang, T., Yang, F., Tong, Y., Chen, Z, He, Y., … Fu, Q. (2023). Human genetic history on the Tibetan Plateau in the past 5100 years. Science Advances, 9, eadd5582. https://doi.org/10.1126/sciadv.add5582 CrossRefGoogle ScholarPubMed
Woodley, M. A., Younuskunju, S., Balan, B., & Piffer, D. (2017). Holocene selection for variants associated with general cognitive ability: Comparing ancient and modern genomes. Twin Research and Human Genetics, 20, 271280. https://doi.org/10.1017/thg.2017.37 CrossRefGoogle ScholarPubMed
Xiong, J., Wang, R., Chen, G., Yang, Y., Du, P., Meng, H., Ma, M., Allen, E., Tao, L., Wang, H., Jin, L., Wang, C. C., & Wen, S. (2024). Inferring the demographic history of Hexi Corridor over the past two millennia from ancient genomes. Science Bulletin, 69, 606611. https://doi.org/10.1016/j.scib.2023.12.031 CrossRefGoogle ScholarPubMed
Yang, M. A., Gao, X., Theunert, C., Tong, H., Aximu-Petri, A., Nickel, B., Slatkin, M., Meyer, M., Pääbo, S., Kelso, J., & Fu, Q. (2017). 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Current Biology, 27, 32023208.e9. https://doi.org/10.1016/j.cub.2017.09.030 CrossRefGoogle ScholarPubMed
Yang, M. A., Fan, X., Sun, B., Chen, C., Lang, J., Ko, Y. C., Tsang, C. H., Chiu, H., Wang, T., Bao, Q., Wu, X., Hajdinjak, M., Ko, A. M., Ding, M., Cao, P., Yang, R., Liu, F., Nickel, B., Dai, Q., Feng, X., … Fu, Q. (2020). Ancient DNA indicates human population shifts and admixture in northern and southern China. Science, 369, 282288. https://doi.org/10.1126/science.aba0909 CrossRefGoogle ScholarPubMed
Yang, X., Sarengaowa, , He, G., Guo, J., Zhu, K., Ma, H., Zhao, J., Yang, M., Chen, J., Zhang, X., Tao, L., Liu, Y., Zhang, X.-F., & Wang, C.-C. (2021). Genomic insights into the genetic structure and natural selection of Mongolians. Frontiers in Genetics, 12, 735786. https://doi.org/10.3389/fgene.2021.735786 CrossRefGoogle ScholarPubMed
Yengo, L., Vedantam, S., Marouli, E., Sidorenko, J., Bartell, E., Sakaue, S., Graff, M., Eliasen, A. U., Jiang, Y., Raghavan, S., Miao, J., Arias, J. D., Graham, S. E., Mukamel, R. E., Spracklen, C. N., Yin, X., Chen, S. H., Ferreira, T., Highland, H. H., … Hirschhorn, J. N. (2022). A saturated map of common genetic variants associated with human height. Nature, 610, 704712. https://doi.org/10.1038/s41586-022-05275-y CrossRefGoogle ScholarPubMed
Zhang, F., Zhang, X., Bai, B., Hu, C., Duan, C., Yuan, H., Zhang, R., Ma, P., Zhou, B., & Ning, C. (2024). Ancient genomes provide insights into the genetic history in the historical era of southwest China. Archaeological and Anthropological Sciences, 16, 120. https://doi.org/10.1007/s12520-024-02036-y CrossRefGoogle Scholar
Supplementary material: File

Piffer supplementary material

Piffer supplementary material
Download Piffer supplementary material(File)
File 2.1 MB