Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T01:59:51.495Z Has data issue: false hasContentIssue false

On definite program answers and least Herbrand models

Published online by Cambridge University Press:  03 May 2016

WŁODZIMIERZ DRABENT*
Affiliation:
Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5, 01-248 Warszawa, Poland Department of Computer and Information Science, Linköping University, S – 581 83 Linköping, Sweden (e-mail: drabent@ipipan.waw.pl)

Abstract

A sufficient and necessary condition is given under which least Herbrand models exactly characterize the answers of definite clause programs.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apt, K. R. 1997. From Logic Programming to Prolog. International Series in Computer Science, Prentice-Hall, Hemel Hempstead, Hertfordshire.Google Scholar
Bossi, A. 2009. S-semantics for logic programming: A retrospective look. Theoretical Computer Science 410, 46, 46924703.CrossRefGoogle Scholar
Davis, M. 1993. First order logic. In Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 1, Logic Foundations, Gabbay, D. M., Hogger, C. J. and Robinson, J. A., Eds. Oxford University Press, New York, 3165.Google Scholar
Doets, K. 1994. From Logic to Logic Programming. The MIT Press, Cambridge, MA.Google Scholar
Drabent, W. 2016. Correctness and Completeness of Logic Programs. ACM Trans. Comput. Log. 17, 3 doi: http://dx.doi.org/10.1145/2898434.Google Scholar
Drabent, W. and Maluszynski, J. 1987. Inductive assertion method for logic programs. In TAPSOFT'87 (International Joint Conference on Theory and Practice of Software Development, Pisa, Italy), Vol. 2, Ehrig, H., Kowalski, R. A., Levi, G. and Montanari, U., Eds. Lecture Notes in Computer Science, Vol. 250. Springer-Verlag, Berlin, Heidelberg, 167181.Google Scholar
Drabent, W. and Małuszyński, J. 1988. Inductive assertion method for logic programs. Theoretical Computer Science 59, 133155.Google Scholar
Lloyd, J. W. 1987. Foundations of Logic Programming. Springer-Verlag, Berlin, Heidelberg. Second, extended edition.Google Scholar
Maher, M. J. 1988. Equivalences of logic programs. In Foundations of Deductive Databases and Logic Programming, Minker, J., Ed. Morgan Kaufmann Publishers, Inc. Los Altos California, 627658.CrossRefGoogle Scholar
Naish, L. 2014. Transforming floundering into success. TPLP 14, 2, 215238.Google Scholar
Shoenfield, J. R. 1967. Mathematical Logic. Addison-Wesley, Reading, MA.Google Scholar
Sterling, L. and Shapiro, E. 1994. The Art of Prolog, 2 ed. The MIT Press, Cambridge, MA.Google Scholar
van Dalen, D. 2004. Logic and Structure, 4th ed. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar