Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:25:02.145Z Has data issue: false hasContentIssue false

Reconstructing the Dust Cycle in Deep Time: the Case of the Late Paleozoic Icehouse

Published online by Cambridge University Press:  21 July 2017

Gerilyn S. Soreghan
Affiliation:
School of Geology and Geophysics, University of Oklahoma, 100 E. Boyd Street, Norman, OK 73019 USA
Nicholas G. Heavens
Affiliation:
Department of Atmospheric and Planetary Sciences, Hampton University, 23 E. Tyler Street, Hampton, VA 23669 USA
Linda A. Hinnov
Affiliation:
Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, 4400 University Drive, Fairfax, VA 20110 USA
Sarah M. Aciego
Affiliation:
Earth and Environmental Sciences, University of Michigan, 2534 C.C. Little Building, 1100 N. University Street, Ann Arbor, MI 48109 USA
Carl Simpson
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012 USA
Get access

Abstract

Atmospheric dust constitutes particles <100 μm, or deposits thereof (continental or marine); dust includes ‘loess,’ defined as continental aeolian silt (4–62.5 μm). Dust is well-known from Earth's near-time (mostly Quaternary) record, and recognized as a high-fidelity archive of climate, but remains under-recognized for deep time. Attributes such as thickness, grain size, magnetism, pedogenesis, and provenance of dust form valuable indicators of paleoclimate to constrain models of atmospheric dustiness. Additionally, dust acts as an agent of climate change via both direct and indirect effects on radiative forcing, and on productivity, and thus the biosphere and carbon cycling. Dust from the late Paleozoic of western equatorial Pangea reflects ultimate derivation from orogens (ancestral Rocky Mountains, Central Pangean Mountains), whereas dust from southwestern Pangea (Bolivia) reflects both proximal volcanism and crustal material. Records of dust conducive to cyclostratigraphic analysis, such as data on dust inputs from carbonate sections, or magnetism in paleo-loess, reveal dust cyclicity at Milankovitch timescales, but resolution is compromised if records are too brief, or irregular in interval or magnitude of the attribute being measured. Climate modeling enables identification of the primary regions of dust sourcing in deep time, and impacts of dust on radiative balance and biogeochemistry. Deep-time modeling remains preliminary, but is achievable, and indicates principal dust sources in the Pangean subtropics, with sources increasing during colder climates. Carbon cycle modeling suggests that glacial-phase dust increases stimulated extreme productivity, potentially increasing algal activity and perturbing ecosystem compositions of the late Paleozoic.

Type
Research Article
Copyright
Copyright © 2015 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarons, S. M., Aciego, S. M., and Gleason, J. 2013. Variable Hf-Sr-Nd radiogenic isotopic compositions in a Saharan dust storm over the Atlantic: Implications for dust flux to oceans, ice sheets and the terrestrial biosphere. Chemical Geology, 349–350:1826.CrossRefGoogle Scholar
Abrajevitch, A., Roberts, A. P., and Kodama, K. 2014. Volcanic iron fertilization of primary productivity at Kerguelen Plateau, Southern Ocean, through the Middle Miocene Climate Transition. Paleogeography, Paleoclimatology, Paleoecology, 410:113.CrossRefGoogle Scholar
Aciego, S. M., Bourdon, B., Lupker, M., and Rickli, J. 2009. A new procedure for separating and measuring radiogenic isotopes (U, Th, Pa, Ra, Sr, Nd, Hf) in ice cores. Chemical Geology, 266:203213.CrossRefGoogle Scholar
Aciego, S. M., Stevenson, E. I., and Arendt, C. A. 2015. Climate versus geological controls on glacial meltwater micronutrient production in southern Greenland. Earth and Planetary Science Letters, 424:5158.CrossRefGoogle Scholar
Alam, K., Trautmann, T., Blaschke, T., and Subhan, F. 2014. Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote Sensing of Environment, 143:216227.CrossRefGoogle Scholar
Albani, S., Mahowald, N. M., Winckler, G., Anderson, R. F., Bradtmiller, L. I., Delmonte, B., François, R., Gorman, M., Heavens, N. G., Hesse, P. P., Hovan, S. A., Kang, S., Kohfeld, K. E., Lu, H., Maggi, V., Mason, J. A., Mayewski, P. A., McGee, D., Miao, X., Otto-Bliesner, B. L., Perry, A. T., Pourmand, A., Roberts, H. M., Rosenbloom, N., Stevens, T., and Sun, J. 2015 In press. Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives. Climate of the Past.CrossRefGoogle Scholar
An, Z. (ed). 2014. Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-Arid Environment Evolution, Springer-Verlag, Dordrecht.CrossRefGoogle Scholar
An, Z. S., Kutzbach, J. E., Prell, W. L., and Porter, S. C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times. Nature, 411:6266.Google Scholar
Anklin, M., Schwander, J., Stauffer, B., Tschumi, J., Fuchs, A., Barnola, J. M., and Raynaud, D. 1997. CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core. Journal of Geophysical Research, 102:2653926545.CrossRefGoogle Scholar
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatte, C., Lang, A., Tissoux, H., and Zoller, L. 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews, 28:29552973.CrossRefGoogle Scholar
Arendt, C. A., Aciego, S. M., and Hetland, E. A. 2015. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes. Geochemistry Geophysics Geosystems, 16:12741292.CrossRefGoogle Scholar
Arendt, C. A., Aciego, S. M., Sims, K. W. W., and Robbins, M. 2014. Sequential separation of uranium, hafnium and neodymium from natural waters concentrated by iron coprecipitation. Geostandards and Geoanalytical Research, 39:293303.CrossRefGoogle Scholar
Arnalds, O. 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences, 23:321.Google Scholar
Assallay, A. M., Rogers, C. D. F., Smalley, I. J., and Jefferson, I. F. 1998. Silt: 2–62 μm, 9–4 ϕ. Earth Science Reviews, 45:6188.CrossRefGoogle Scholar
Bagnold, R. A. 1941. The Physics of Blown Sand and Desert Dunes. Chapman and Hall, London.Google Scholar
Baker, A. R., and Jickells, T. D. 2006. Mineral particle size as a control on aerosol iron solubility. Geophysical Research Letters, 33:L17608.CrossRefGoogle Scholar
Bayon, G., Burton, K. W., Soulet, G., Vigier, N., Dennielou, B., Etoubleau, J., Ponzevera, E., German, C. R., and Nesbitt, R. W. 2009. Hf and Nd isotopes in marine sediments: Constraints on global silicate weathering. Earth and Planetary Science Letters, 277:318326.CrossRefGoogle Scholar
Berger, A., and Loutre, M.-F. 1994. Astronomical forcing through geologic time, p. 1524 In de Boer, P. L. and Smith, D. G., (eds), Orbital Forcing and Cyclic Sequences, International Association of Sedimentologists, Special Publication, 19.CrossRefGoogle Scholar
Berger, A., Loutre, M.-F., and Laskar, J. 1992. Stability of the astronomical frequencies over Earth's history for paleoclimate studies. Science, 255:560566.CrossRefGoogle ScholarPubMed
Berner, R. A., and Kothavala, Z. 2001. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301:182204.CrossRefGoogle Scholar
Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., and Volkova, V. S. 2003. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55° N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research, 108:8170.CrossRefGoogle Scholar
Bills, B. G. 1994. Obliquity-oblateness feedback: are climatically sensitive values of obliquity dynamically unstable? Geophysical Research Letters, 21:177180.CrossRefGoogle Scholar
Blichert-Toft, J., Arndt, N. T., and Gruau, G. 2004. Hf isotopic measurements on Barberton komatiites: effects of incomplete sample dissolution and importance for primary and secondary magmatic signatures. Chemical Geology, 207, 261275.CrossRefGoogle Scholar
Boucot, A. J., Xu, C., and Scotese, C. R. 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Concepts in Sedimentology and Paleontology, 11.Google Scholar
Boyce, C. K., Brodribb, T. J., Field, T. S., and Zwieniecki, M.A. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B, 276:17711776.CrossRefGoogle ScholarPubMed
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch, R., Bakker, D. C. E., Bowie, A. R., Buesseler, O., Chang, H., Charette, M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., Laroche, J., Liddicoat, M., Ling, R., Maldonado, M. T., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and Zeldis, J. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407:695702.CrossRefGoogle ScholarPubMed
Bullard, J. E. 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms, 38:7189.CrossRefGoogle Scholar
Cakmur, R. V., Miller, R. L., and Torres, O. 2004. Incorporating the effect of small scale circulations upon dust emission in an AGCM. Journal of Geophysical Research, 109:D07201.CrossRefGoogle Scholar
Capone, D. G., Zehr, J., Paerl, H., Bergman, B., and Carpenter, E. J. 1997. Trichodesmium: A globally significant marine cyanobacterium. Science, 276:12211229.CrossRefGoogle Scholar
Carroll, A. R., Stephens, N. P., Hendrix, M. S., and Glenn, C. R. 1998. Eolian-derived siltstone in the Upper Permian Phosphoria Formation: implications for marine upwelling. Geology, 26:10231026.2.3.CO;2>CrossRefGoogle Scholar
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., and Hedin, L.O. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature, 397:491497.CrossRefGoogle Scholar
Chen, J., Li, G., Yang, J., Rao, W., Lu, H., Balsam, W., Sun, Y., and Ji, J. 2007. Nd and Sr isotopic characteristics of Chinese deserts: implication for provenance of Asian dust. Geochimica et Cosmochimica Acta, 71:39043914.CrossRefGoogle Scholar
Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S., Chavez, F. P., Ferioli, L., Sakamoto, C., Rogers, P., Millero, F., Steinberg, P., Nightingale, P., Cooper, D., Cochlan, W. P., Landry, M. R., Constantinou, J., Rollwagen, G., Trasvina, A., and Kudela, R. 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383:495501.CrossRefGoogle ScholarPubMed
Conkright, M. E., Levitus, S., and Boyer, T. P. 1994. World Ocean Atlas 1994, Volume 1: Nutrients. NOAA Atlas NESDIS, 1.Google Scholar
Cook, B. I., Miller, R. L., and Seager, R. 2008. Dust and sea surface temperature forcing of the 1930s “Dust Bowl” drought. Geophysical Research Letters, 35:L08710.CrossRefGoogle Scholar
Cook, B. I., Miller, R. L., and Seager, R. 2009. Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proceedings of the National Academy of Sciences, 106:4997.CrossRefGoogle ScholarPubMed
Cook, B. I., Seager, R., Miller, R. L., and Mason, J. A. 2013. Intensification of North American Megadroughts through surface and dust aerosol forcing. Journal of Climate, 26:44144430.CrossRefGoogle Scholar
Coude-Gaussen, G. 1987. The Perisaharan loess: sedimentological characterization and paleoclimatical significance. GeoJournal, 15:177183.CrossRefGoogle Scholar
Crouvi, O, Amit, R., and Enzel, Y. 2010. Active sand seas and the formation of desert loess. Quaternary Science Reviews, 29:20872098.CrossRefGoogle Scholar
Crouvi, O., Schepanski, K., Amit, R., Gillespie, A. R., and Enzel, Y. 2012. Multiple dust sources in the Sahara Desert: The importance of sand dunes. Geophysical Research Letters, 39:L13401.CrossRefGoogle Scholar
Crowell, J. C. 1999. Pre-Mesozoic ice ages: their bearing on understanding the climate system. Geological Society of America Memoir, 192.Google Scholar
Dahms, D. E. 1993. Mineralogical evidence for eolian contribution to soils of late Quaternary moraines, Wind River Mountains, Wyoming. Geoderma, 59:175196.CrossRefGoogle Scholar
Davydov, V. I., Crowley, J. L., Schmitz, M. D., and Poletaev, V. I. 2010. High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine. Geochemistry, Geophysics, Geosystems, 11:Q0AA04.CrossRefGoogle Scholar
Delmonte, B., Baroni, C., Andersson, P. S., Schonberg, H., Hansson, M., Aciego, S., Petit, J.-R., Albani, S., Mazziola, C., Maggi, V., and Frezzotti, M. 2010. Aeolian dust in the Talos Dome ice core (East Antarctica, Pacific/Ross Sea sector): Victoria Land versus remote sources over the last two climate cycles. Journal of Quaternary Science, 25:13271337.CrossRefGoogle Scholar
Demenocal, P. B., Ortiz, J., Guilderson, T., and Sarnthein, M. 2000. Coherent high- and low-latitude climate variability during the Holocene warm period. Science, 288:21982202.CrossRefGoogle ScholarPubMed
Demott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C., Brooks, S. D., Prenni, A. J., and Kreidenweis, S. M. 2003. African dust aerosols as atmospheric ice nuclei. Geophysical Research Letters, 30:1732.CrossRefGoogle Scholar
DePaolo, D. J. 1980. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochemica et Cosmochimica Acta, 44:11851196.CrossRefGoogle Scholar
DePaolo, W., and Wasserburg, G. 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3:249252.CrossRefGoogle Scholar
DiMichele, W. A., and Falcon-Lang, H. J. 2011. Pennsylvanian ‘fossil forests’ in growth position (T0 assemblages): origin, taphonomic bias, and palaeoecological insights. Journal of the Geological Society, 168:585605.CrossRefGoogle Scholar
Ding, Z. L., Derbyshire, E., Yang, S. L., Yu, Z. W., Xiong, S. F., and Liu, T. S. 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography, 17:121.CrossRefGoogle Scholar
Evans, J. E., and Reed, J. M. 2007. Integrated loessitepaleokarst depositional system, early Pennsylvanian Molas Formation, Paradox Basin, southwest Colorado, U.S.A. Sedimentary Geology, 195:161181.CrossRefGoogle Scholar
Falcon-Lang, H. J. 2003. Late Carboniferous dryland tropical vegetation, Joggins, Nova Scotia, Canada. Palaios, 18:197211.2.0.CO;2>CrossRefGoogle Scholar
Falcon-Lang, H. J. 2006. Vegetation ecology of Early Pennsylvaian alluvial fan and piedmont environments in southern New Brunswick, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 233:3450.CrossRefGoogle Scholar
Fielding, C., Frank, T., and Isbell, J. 2008. The late Paleozoic ice age—a review of current understanding and synthesis of global climate patterns, p. 343354 In Fielding, C. R., Frank, T. D., and Isbell, J. I. (eds.), Resolving the Late Paleozoic Ice Age in Time and Space, Geological Society of America Special Paper, 441.Google Scholar
Fischer, A. G., and Sarnthein, M. 1988. Airborne silts and dune-derived sands in the Permian of the Delaware Basin. Journal of Sedimentary Petrology, 58:637643.Google Scholar
Foster, T. M., Soreghan, G. S., Soreghan, M. J., Benison, K. C., and Elmore, R. D. 2014. Climatic and paleogeographic significance of eolian sediment in the Middle Permian Dog Creek Shale (Midcontinent U.S.). Palaeogeography, Palaeoclimatology, Palaeoecology, 402:1229.CrossRefGoogle Scholar
Gabbott, S., Zalasiewicz, J., Aldridge, R., and Theron, J. 2010. Eolian input into the Late Ordovician postglacial Soom Shale, South Africa. Geology, 38:11031106.CrossRefGoogle Scholar
Gallet, S., Jahn, B. M., Vanvliet Lanoe, B., Dia, A., and Rossello, E. 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters, 156:157172.CrossRefGoogle Scholar
Garrison, V. H., Shinn, E. A., Foreman, W. T., Griffin, D. W., Holmes, C. W., Kellogg, C. A., Majewski, M. S., Richardson, L. L., Ritchie, K. B., and Smith, G. W. 2003. African and Asian dust: from desert soils to coral reefs. BioScience, 53:469480.CrossRefGoogle Scholar
Gerhart, L. M., and Ward, J. K. 2010. Plant responses to low CO2 of the past. New Phytologist, 188:674695.CrossRefGoogle ScholarPubMed
Giles, J. M., Soreghan, M. J., Benison, K. C., Soreghan, G. S., and Hasiotis, S. T. 2013. Lakes, loess, and paleosols in the Permian Wellington Formation of Oklahoma, U.S.A.: Implications for paleoclimate and paleogeography of the Midcontinent. Journal of Sedimentary Research, 83:825846.CrossRefGoogle Scholar
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J. 2001. Sources and distribution of dust aerosols simulated with the GOCART model. Journal of Geophysical Research, 106:2025520273.CrossRefGoogle Scholar
Goebel, K. A., Bettis, E. A. III, and Heckel, P. H. 1989. Upper Pennsylvanian paleosol in Stranger Shale and underlying Iatan Limestone, southwestern Iowa. Journal of Sedimentary Petrology, 59:224232.Google Scholar
Goldhammer, R. K., Oswald, E. J., and Dunn, P. A. 1994. High-frequency glacio-eustatic cyclicity in the Middle Pennsylvanian of the Paradox Basin: an evaluation of Milankovitch forcing, p. 243283 In de Boer, P. L. and Smith, D. G. (eds.), Orbital Forcing and Cyclic Sequences, International Association of Sedimentologists Special Publication 19, Blackwell Scientific.CrossRefGoogle Scholar
Grini, A., and Zender, C. S. 2004. Roles of saltation, sandblasting, and wind speed variability on mineral dust aerosol size distribution during the Puerto Rican Dust Experiment (PRIDE). Journal of Geophysical Research, 109:D07202.CrossRefGoogle Scholar
Grönvold, K., Óskarsson, N., Johnsen, S. J., Clausen, H. B., Hammer, C. U., Bond, G., and Bard, E. 1995. Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments, Earth and Planetary Science Letters, 135:149155.CrossRefGoogle Scholar
Grousset, F. E., and Biscaye, P. E. 2005. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chemical Geology, 222:149167.CrossRefGoogle Scholar
Gustavson, T. C., and Holliday, V. T. 1999. Eolian sedimentation and soil development on a semiarid to sub humid grassland, Tertiary Ogallala and Quaternary Blackwater Draw formations, Texas and New Mexico high plains. Journal of Sedimentary Research, 69:622634.CrossRefGoogle Scholar
Goudie, A. S. 1983. Dust storms in space and time. Progress in Physical Geography, 7:502530.CrossRefGoogle Scholar
Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., Peng, S. Z., Wei, J. J., Yuan, B. Y., and Liu, T. S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416:159163.CrossRefGoogle ScholarPubMed
Hallock, P. and Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1:389398.CrossRefGoogle Scholar
Hamme, R. C., Webley, P. W., Crawford, W. R., Whitney, F. A., DeGrandpre, M. D., Emerson, S. R., Eriksen, C. C., Giesbrecht, K. E., Gower, J. F., and Kavanaugh, M. T. 2010. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophysical Research Letters, 37. doi: 10.1029/2010GL044629.CrossRefGoogle Scholar
Harrison, S. P., Yu, G., Takahara, H., and Prentice, I. C. 2001. Palaeovegetation (Communications arising). Diversity of temperate plants in east Asia. Nature, 413:129130.Google Scholar
Heavens, N. G., Shields, C. A., and Mahowald, N. M. 2012. A paleogeographic approach to aerosol prescription in simulations of deep time climate. Journal of the Advances in the Modeling of Earth Systems, 4:M11002.CrossRefGoogle Scholar
Heavens, N. G., Mahowald, N. M., Soreghan, G. S., Soreghan, M. J., and Shields, C. A. 2015. A model-based evaluation of tropical climate in Pangaea during the late Palaeozoic icehouse. Palaeogeography, Palaeoclimatology, Palaeoecology, 425:109127.CrossRefGoogle Scholar
Highwood, E. J., and Ryder, C. L. 2014. Radiative effects of dust, p. 267286 In Knippertz, P. and Stuut, J.-B. (eds.), Mineral Dust: A Key Player in the Earth System. Springer, Dordrecht.CrossRefGoogle Scholar
Hinnov, L. A. 2000. New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences, 28:419475.CrossRefGoogle Scholar
Hinnov, L. A., and Hilgen, F. 2012. Chapter 4: Cyclostratigraphy and astrochronology, p. 6383 In Gradstein, F., Ogg, J., Ogg, G., and Smith, D. (eds.), A Geologic Time Scale 2012, Elsevier.CrossRefGoogle Scholar
Horton, D. E., Poulsen, C. J., and Pollard, D. 2010. Influence of high-latitude vegetation feedbacks on late Palaeozoic glacial cycles. Nature Geoscience, 3:572577.CrossRefGoogle Scholar
Hovan, S. A., Rea, D. K., Pisias, N. G., and Shackleton, N. J. 1989. A direct link between the China Loess and marine δ18O records— aeolian flux to the North Pacific. Nature, 340:296298.CrossRefGoogle Scholar
Jackson, J., Donovan, M., Cramer, K., and Lam, V. 2014. Status and trends of Caribbean coral reefs: 1970–2012. Global Coral Reef Monitoring Network, Washington, D.C. Google Scholar
Jefferson, I. F., Jefferson, B. Q., Assallay, A. M., Rogers, C. D. F., and Smalley, I. J. 1997. Crushing of quartz sand to produce silt particles. Naturwissenschaften, 84:148149.Google Scholar
Jiang, X., and Peltier, W. R. 1996. Ten million year histories of obliquity and precession: the influence of the ice-age cycle. Earth and Planetary Science Letters, 139:1732.CrossRefGoogle Scholar
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308:6771.CrossRefGoogle ScholarPubMed
Johnson, S. Y. 1989. Significance of loessite in the Maroon Formation (Middle Pennsylvanian to Lower Permian), Eagle Basin, northwestern Colorado. Journal of Sedimentary Petrology, 59:782791.Google Scholar
Joussaume, S. 1993. Paleoclimatic tracers: An investigation using an atmospheric general circulation model under ice age conditions: 1 desert dust. Journal of Geophysical Research, 98:27672805.CrossRefGoogle Scholar
Kanayama, S., Yabuki, S., Yanagisawa, F., and Motoyama, R. 2002. The chemical and strontium isotope composition of atmospheric aerosols over Japan: the contribution of long-range-transported Asian dust (Kosa). Atmospheric Environment, 36:51595175.CrossRefGoogle Scholar
Kaplan, J. O., Bigelow, N. H., Prentice, I. C., Harrison, S. P., Bartlein, P. J., Christensen, T. R., Cramer, W., Matveyeva, N. V., McGuire, A. D., Murray, D. F., Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M., Andreev, A. A., Brubaker, L. B., Edwards, M. E., and Lozhkin, A. V. 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodate-model comparisons, and future projections. Journal of Geophysical Research, 108:8171.CrossRefGoogle Scholar
Kessler, J., Soreghan, G., and Wacker, H. 2001. Equatorial aridity in western Pangea: Lower Permian loessite and dolomitic paleosols in Northeastern New Mexico, USA. Journal of Sedimentary Research, 71:817832.CrossRefGoogle Scholar
Kidron, G. J., Zohar, M., and Starinsky, A. 2014. Spatial distribution of dust deposition within a small drainage basin: Implications for loess deposits in the Negev Desert: Sedimentology, 61:19081922.CrossRefGoogle Scholar
Kiehl, J. T., and Shields, C. A. 2005. Climate simulation of the latest Permian: implications for mass extinction. Geology, 33:757760.CrossRefGoogle Scholar
Kiessling, W. 2001. Paleoclimatic significance of Phanerozoic reefs. Geology, 29:751754.2.0.CO;2>CrossRefGoogle Scholar
Kiessling, W. 2009. Geologic and biologic controls on the evolution of reefs. Annual review of ecology, evolution, and systematics, 40:173192.CrossRefGoogle Scholar
Kiessling, W., Flügel, E., and Golonka, J. 1999. Paleoreef maps: evaluation of a comprehensive database on Phanerozoic reefs. AAPG Bulletin, 83:15521587.Google Scholar
Kodama, K. P., and Hinnov, L. A. 2015. Rock Magnetic Cyclostratigraphy. Wiley-Blackwell, Chichester, England.Google Scholar
Kohfeld, K. E., Le Qu, K. C., Harrison, S. P., and Anderson, R. F. 2005. Role of marine biology in glacial-interglcial CO2 cycles. Science, 308:7478.CrossRefGoogle ScholarPubMed
Kok, J. F. 2011. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proceedings of the National Academy of Sciences of the United States of America, 108:10161021.CrossRefGoogle ScholarPubMed
Kuenen, P. H. 1969. Origin of quartz silt. Journal of Sedimentary Petrology, 39:16311633.CrossRefGoogle Scholar
Kumar, R., Jefferson, I. F., O'Hara-Dhand, K., and Smalley, I. J. 2006. Controls on quartz silt formation by crystalline defects. Naturwissenschaften, 93:185188.CrossRefGoogle ScholarPubMed
Kukla, G. 1987. Loess stratigraphy in central China. Quaternary Science Reviews, 6:191219.CrossRefGoogle Scholar
Kukla, G., Heller, F., Liu, X. M., Xu, T. C., Liu, T. S., and An, Z. S. 1988. Pleistocene climates in China dated by magnetic susceptibility. Geology, 16:811814.2.3.CO;2>CrossRefGoogle Scholar
Kumar, N., Anderson, R. F., Mortlock, R. A., Froelich, P. N., Kunik, P. L., Dittrich-Hannen, B., and Suter, M. 1995. Increased biological productivity and export production in the glacial Southern Ocean. Nature, 378:675680.CrossRefGoogle Scholar
Kurosaki, Y., Shinoda, M., and Mikami, M. 2011. What caused a recent increase in dust outbreaks over East Asia? Geophysical Research Letters, 38:L11702.CrossRefGoogle Scholar
Kutzbach, J. E., and Gallimore, R. G. 1989. Pangaean climates: megamonsoons of the megacontinent. Journal of Geophysical Research, 94:33413357.CrossRefGoogle Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M. 2014. Sea level and global ice volume from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 111:1529615303.CrossRefGoogle ScholarPubMed
Lapen, T. J., Mahlen, N. J., Johnson, C. M., and Beard, B. L. 2004. High precision Lu and Hf isotope analyses of both spiked and unspiked samples: a new approach: Geochemistry Geophysics Geosystems, 5:1.CrossRefGoogle Scholar
Laskar, J. 2013. Is the Solar System stable? Progress in Mathematical Physics, 66:239270.CrossRefGoogle Scholar
Laskar, J., Gastineau, M., Delisle, J.-B., Farres, A. and Fienga, A. 2011b. Strong chaos induced by close encounters with Ceres and Vesta. Astronomy and Astrophysics, 532:L4.CrossRefGoogle Scholar
Laskar, J., Fienga, A., Gastineau, M. and Manche, H. 2011a. La2010: a new orbital solution for the long-term motions of the Earth. Astronomy and Astrophysics, 532:A89.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428:261285.CrossRefGoogle Scholar
Li, F., Ramaswamy, V., Ginoux, P., Broccoli, A. J., Delworth, T., and Zeng, F. 2010. Toward understanding the dust deposition in Antarctica during the Last Glacial Maximum: Sensitivity studies on plausible causes. Journal of Geophysical Research, 115:D24120.CrossRefGoogle Scholar
Luo, C., Mahowald, N., Bond, T., Chuang, P. Y., Artaxo, P., Siefert, R., Chen, Y., and Schauer, J. 2008. Combustion iron distribution and deposition. Global Biogeochemical Cycles, 22:GB1012.CrossRefGoogle Scholar
Lupker, M., Aciego, S. M., Bourdon, B., Schwander, J., and Stocker, T. F. 2010. Isotopic tracing (Sr, Nd, U and Hf) of continental and marine aerosols in an 18th century section of the Dye–3 ice core (Greenland). Earth and Planetary Science Letters, 295:277286.CrossRefGoogle Scholar
Mack, G. H., and Dinterman, P. A. 2002. Depositional environments and paleogeography of the Lower Permian (Leonardian) Yeso and correlative formations in New Mexico. The Mountain Geologist, 39:7588.Google Scholar
Maher, B. A., and Thompson, R. 1991. Mineral magnetic record of the Chinese loess and paleosols. Geology, 19:36.2.3.CO;2>CrossRefGoogle Scholar
Maher, B. A., and Thompson, R. 1995. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quaternary Research, 44:383391.CrossRefGoogle Scholar
Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P. P., and Balkanski, Y. 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth Science Reviews, 99:6197.CrossRefGoogle Scholar
Mahlen, N. J., Beard, B. L., Johnson, C. M., and Lapen, T. J. 2008. An investigation of dissolution methods for Lu–Hf and Sm–Nd isotope studies in zircon–and garnet–bearing whole–rock samples. Geochemistry, Geophysics, Geosystems, 9:1.CrossRefGoogle Scholar
Mahowald, N. 2011. Aerosol indirect effect on biogeochemical cycles and climate. Science, 334:794796.CrossRefGoogle ScholarPubMed
Mahowald, N. M., and Kiehl, L. M. 2003. Mineral aerosol and cloud interactions. Geophysical Research Letters, 30:1475.CrossRefGoogle Scholar
Mahowald, N. M., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S. P., Prentice, I. C., Schulz, M., and Rodhe, H. 1999. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research, 104:1589515916.CrossRefGoogle Scholar
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender, C. S., and Luo, C. 2006a. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research, 111:D10202.Google Scholar
Mahowald, N. M., Yoshioka, M., Collins, W. D., Conley, A. J., Fillmore, D. W., and Coleman, D. B. 2006b. Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current, and doubled-carbon dioxide climates. Geophysical Research Letters, 33:L20705.CrossRefGoogle Scholar
Mahowald, N. M., Kloster, S., Engelstaedter, S., Moore, J. K., Mukhopadhyay, S., McConnell, J. R., Albani, S., Doney, S. C., Bhattacharya, A., Curran, M. A. J., Flanner, M. G., Hoffman, F. M., Lawrence, D. M., Lindsay, K., Mayewski, P. A., Neff, J., Rothenberg, D., Thomas, E., Thornton, P. E., and Zender, C. S. 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics, 10:1087510893.CrossRefGoogle Scholar
Mahowald, N., Ward, D. S., Kloster, S., Flanner, M. G., Heald, C. L., Heavens, N. G., Hester, T., Lamarque, J.-F., and Chuang, P. Y. 2011. Aerosol impacts on climate and biogeochemistry. Annual Review of Environmental Resources, 36:4574.CrossRefGoogle Scholar
Marticorena, B., and Bergametti, G. 1995. Modeling the atmospheric dust cycle: 1. Design of a soil-derived emission scheme. Journal of Geophysical Research, 100:1641516430.CrossRefGoogle Scholar
Martin, J. H., and Fitzwater, S. E. 1989. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331:341343.CrossRefGoogle Scholar
Martin, J. H. 1991. Iron still comes from above. Nature, 353:123.CrossRefGoogle Scholar
Martin, J. H., Gordon, R. M., and Fitzwater, S. E. 1991. The case for iron. Limnology and Oceanography, 36:17931802.CrossRefGoogle Scholar
Martin, J. H., Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S. J., Hunter, C. N., Elrod, V. A., Nowicki, J. L., Coley, T. L., Barber, R. T., Lindley, S., Watson, A. J., Van Scoy, K., Law, C. S., Liddicoat, M. I., Ling, R., Stanton, T., Stockel, J., Collins, C., Anderson, A., Bidigare, R., Ondrusek, M., Latasa, M., Millero, F. J., Lee, K., Yao, W., Zhang, J. Z., Friederich, G., Sakamoto, C., Chavez, F., Buck, K., Kolber, Z., Greene, R., Falkowski, P., Chisholm, S. W., Hoge, F., Swift, R., Yungel, J., Turner, S., Nightingale, P., Hatton, A., Liss, P., and Tindale, N. W. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371:123129.CrossRefGoogle Scholar
Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P. 2003. Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. Journal of Geophysical Research, 108:4097.CrossRefGoogle Scholar
Mason, J., and Jacobs, P. 1998. Chemical and particle-size evidence for addition of fine dust to soils of the Midwestern United States. Geology, 26:11351138.2.3.CO;2>CrossRefGoogle Scholar
Mason, J. A., Nater, E. A., Zanner, C. W., and Bell, J. C. 1999. A new model of topographic effects on the distribution of loess. Geomorphology, 28:223236.CrossRefGoogle Scholar
Melvin, J., Sprague, R. A., and Heine, C. J. 2010. From bergs to ears: the Late Paleozoic Gondwanan glaciation and its aftermath in Saudi Arabia, p. 3780 In López-Gamundi, O. R. and Buatois, L. A. (eds.), Late Paleozoic Glacial Events and Postglacial Transgressions in Gondwana, Geological Society of America Special Paper, 468.Google Scholar
Meyers, S. R., and Sageman, B. B. 2007. Quantification of deep-time orbital forcing by Average Spectral Misfit. American Journal of Science, 307:773792.CrossRefGoogle Scholar
Miller, R. L., Knippertz, P., Garcia-Pando, C. P., Perlwitz, J. P., and Tegen, I. 2014. Impact of dust radiative forcing upon climate, p. 327357 In Knippertz, P. and Stuut, J.-B. (eds.), Mineral Dust: A Key Player in the Earth System. Springer, Dordrecht.CrossRefGoogle Scholar
Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D., Fielding, C. R., Isbell, J. L., Birgenheier, L. P., and Rygel, M.C. 2007. CO2-forced climate and vegetation instability during late Paleozoic deglaciation. Science, 315:8791.CrossRefGoogle ScholarPubMed
Moore, J. K., and Doney, S. C. 2007. Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Global Biogeochemical Cycles, 21:GB2001.CrossRefGoogle Scholar
Moore, C. M., Mills, M. M., Milne, A., Langlois, R., Achterberg, E. P., Lochte, K., Geider, R. J., and Laroche, J. 2006. Iron limits primary productivity during spring bloom development in the central North Atlantic. Global Change Biology, 12:626634.CrossRefGoogle Scholar
Morche, W., Hubberten, H. W., Mackensen, A., and Keller, J. 1992. Geochemistry of Cenozoic ash layers from the Kerguelen Plateau (Leg 120): A first step toward a tephrostratigraphy of the southern Indian Ocean. In Schlich, R. and Wise, S. W. Jr. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Volume 120. doi: 10.2973.odp.proc.sr.120.163.1992.Google Scholar
Morley, R. J. 2011. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests, p. 134 In Bush, M. B., Flenley, J. R., and Gosling, W. D. (eds.), Tropical Rainforest Responses to Climatic Change (Second Edition), Springer-Verlag, Berlin.Google Scholar
Moxim, W. J., Fan, S.-M., and Levy, H. II. 2011. The meteorological nature of variable solute transport and deposition within the North Atlantic Ocean basin. Journal of Geophysical Research, 116:D03203.CrossRefGoogle Scholar
Muhs, D. R. 2013. The geologic records of dust in the Quaternary. Aeolian Research, 9:348.CrossRefGoogle Scholar
Muhs, D. R., and Bettis, E. A. III. 2003. Quaternary loess-paleosol sequences as an example of climatic extremes, p. 5374 In Chan, M. A. and Archer, A. W. (eds.), Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America Special Publication, 370.Google Scholar
Muhs, D. R., Bettis, E. A., Aleinikoff, J. N., McGeehin, J. P., Beann, J., Skipp, G., Marshall, B. D., Roberts, H. M., Johnson, W. C., and Benton, R. 2008. Origin and paleoclimatic significance of late Quaternary loess in Nebraska: Evidence from stratigraphy, chronology, sedimentology, and geochemistry. Geological Society of America Bulletin, 120:13781407.CrossRefGoogle Scholar
Murphy, K. 1987. Eolian origin of upper Paleozoic red siltstones at Mexican Hat and Dark Canyon, southeastern Utah. Unpublished M.S. Thesis, University of Nebraska at Lincoln, 128 p.Google Scholar
Nahon, D. and Trompette, R. 1982. Origin of siltstones: glacial grinding versus weathering. Sedimentology, 29:2535.CrossRefGoogle Scholar
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. 2002. Modeling the Martian dust cycle: 1. Representations of dust transport processes. Journal of Geophysical Research, 107:5123.Google Scholar
Nichol, J. E., and Nichol, D. W. 2013. Pleistocene loess in the humid subtropical forest zone of East Asia. Geophysical Research Letters, 40:19781983.CrossRefGoogle Scholar
Nie, J., Song, Y., King, J. W., Zhang, R., and Fang, X. 2013. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during ∼4.5–2.6 Ma. Quaternary Research, 79:465470.CrossRefGoogle Scholar
Nie, J., Peng, W., Möller, A., Song, Y., Stockli, D. F., Stevens, T., Horton, B. K., Liu, S., Bird, A., Oalmann, J., Gong, H., and Fang, X. 2014. Provenance of the upper Miocene–Pliocene Red Clay deposits of the Chinese loess plateau. Earth and Planetary Science Letters, 407:3547.CrossRefGoogle Scholar
Okin, G. S. 2008. A new model of wind erosion in the presence of vegetation. Journal of Geophysical Research, 113:F02S10.CrossRefGoogle Scholar
Okin, G. S., and Gillette, D. A. 2001. Distribution of vegetation in wind-dominated landscapes: Implications for wind erosion modeling and landscape processes. Journal of Geophysical Research, 106:96739683.CrossRefGoogle Scholar
Okin, G. S., Mahowald, N., Chadwick, O. A., and Artaxo, P. 2004. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochemical Cycles, 18:GB2005.CrossRefGoogle Scholar
Okin, G. S., Baker, A. R., Tegen, I., Mahowald, N. M., Dentener, F. J., Duce, R. A., Galloway, J. N., Hunter, K., Kanakidou, M., Kubilay, N., Prospero, J. M., Sarin, M., Surapipith, V., Uematsu, M., and Zhu, T. 2011. Impacts of atmospheric nitrogen deposition on marine productivity: Roles of nitrogen, phosphorus, and iron. Global Biogeochemical Cycles, 25:GB2022.CrossRefGoogle Scholar
Pagani, M., Caldeira, K., Berner, R., and Beerling, D. J. 2009. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature, 460:8588.CrossRefGoogle ScholarPubMed
Patchett, P. J., and Tatsumoto, M. 1980. Hafnium isotope variations in oceanic basalts. Geophysical Research Letters, 7:10771080.CrossRefGoogle Scholar
Patterson, E. M. 2011. Fluctuating dust in the late Paleozoic icehouse: Records from an oceanic atoll, Akiyoshi, Japan. Unpublished M.S. Thesis, University of Oklahoma, 115 p.Google Scholar
Paytan, A., and McLaughlin, K. 2007. The oceanic phosphorus cycle. Chemical Reviews, 107:563576.CrossRefGoogle ScholarPubMed
Peltier, W. R., Argus, D. F., and Drummond, R. 2015. Space geodesy constrains ice age terminal deglaciation: The global ICE–6GC (VM5a) model. Journal of Geophysical Research Solid Earth, 120:450487.CrossRefGoogle Scholar
Peyser, C. E., and Poulsen, C. J. 2008. Controls on Permo–Carboniferous precipitation over tropical Pangaea: a GCM sensitivity study. Palaeogeography, Palaeoclimatology, Palaeoecology, 268:181192.CrossRefGoogle Scholar
Pickett, E. J., Harrison, S. P., Hope, G., Harle, K., Dodson, J. R., Kershaw, A. P., Prentice, I. C., Backhouse, J., Colhoun, E. A., D'costa, D., Flenley, J., Grindrod, J., Haberle, S., Hassell, C., Kenyon, C., Macphail, M., Martin, H., Martin, A.H., McKenzie, M., Newsome, J.C., Penny, D., Powell, J., Raine, J. I., Southern, W., Stevenson, J., Sutra, J.-P., Thomas, I., Van Der Kaars, S., and Ward, J. 2004. Pollen-based reconstructions of biome distributions for Australia, Southeast Asia, and the Pacific (SEAPAC region) at 0, 6000, and 18000 14C yr BP. Journal of Biogeography, 31:13811444.CrossRefGoogle Scholar
Porter, S. C., and An, Z. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375:305308.CrossRefGoogle Scholar
Porter, S. C. 2001. Chinese loess record of monsoon climate during the last glacial-interglacial cycle. Earth-Science Reviews, 54:115128.CrossRefGoogle Scholar
Prasad, V., Strömberg, C. A. E., Alimohammadian, H., and Sahni, A. 2005. Dinosaur coprolites and the early evolution of grasses and grazers. Science, 310:11771180.CrossRefGoogle ScholarPubMed
Prentice, I. C., D. Jolly, and Biome 6000 Participants. 2000. Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. Journal of Biogeography, 27:507519.CrossRefGoogle Scholar
Prospero, J. P., Bullard, J. E., and Hodgkins, R. 2012. High latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science, 335:10781082.CrossRefGoogle ScholarPubMed
Prospero, J. P., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E. 2002. Environmental characterisation of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 40:2131.CrossRefGoogle Scholar
Pullen, A., Kapp, P., McCallister, A. T., Chang, H., Gehrels, G. E., Garzione, C. N., and Heermance, R.V. 2011. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology, 39:10311034.CrossRefGoogle Scholar
Pye, K. 1987. Aeolian Dust and Dust Deposits. Academic Press, London.Google Scholar
Pye, K. 1989. Processes of fine particle formation, dust source regions, and climatic changes, p. 330 In Leinen, M. and Sarnthein, M. (eds.), Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport, Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Pye, K. 1995. The nature, origin, and accumulation of loess. Quaternary Science Review, 14:653667.CrossRefGoogle Scholar
Pye, K., and Sherwin, D. 1999. Loess, p. 213238 In Goudie, A. S., Livingstone, I., and Stokes, S. (eds.), Aeolian Environments, Sediments, and Landforms. John Wiley & Sons, Chichester, United Kingdom.Google Scholar
Rea, D. K. 1994. The paleoclimatic record provided by eolian deposition in the deep-sea—The geologic history of wind. Reviews of Geophysics, 32:159195.CrossRefGoogle Scholar
Rees, P. M., Ziegler, A. M., Gibbs, M. T., Kutzbach, J. E., Behling, P. J., and Rowley, D. B. 2002. Permian phytogeographic patterns and climate data/model comparisons. The Journal of Geology, 110:131.CrossRefGoogle Scholar
Retallack, G. J. 1982. Paleopedological perspectives on the development of grasslands during the Tertiary. Proceedings of Third North American Paleontological Convention, 2:417421.Google Scholar
Retallack, G. J. 1992. Paleozoic paleosols, p. 543654 In Martini, P. (ed.), Weathering, Soil, and Paleosols. Elsevier, Amsterdam.CrossRefGoogle Scholar
Rickli, J., Frank, M., Baker, A. R., Aciego, S. M., de Souza, G., Georg, R. B., and Halliday, A. N. 2010. Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: Implications for sources and inputs of trace metals to the ocean. Geochimica et Cosmochimica Acta, 74:540557.CrossRefGoogle Scholar
Ridgwell, A. 2002. Dust in the Earth system: The biogeochemical linking of land, air, and sea. Philosophical Transactions of the Royal Society of London, 360:121.Google ScholarPubMed
Ridley, D. A., Heald, C. L., Pierce, J. R., and Evans, M. J. 2013. Toward resolution-independent dust emissions in global models: Impacts on the seasonal and spatial distribution of dust. Geophysical Research Letters, 40:28732877.CrossRefGoogle Scholar
Riggs, N. R., Lehman, T. M., Gehrels, G. E., and Dickinson, W. R. 1996. Detrital zircon link between headwaters and terminus of the Upper Triassic Chinle-Dockum paleoriver system. Science, 273:97100.CrossRefGoogle ScholarPubMed
Rosenfeld, D., Rudich, Y., and Lahav, R. 2001. Dust suppressing precipitation: A possible desertification feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 98:59755980.CrossRefGoogle ScholarPubMed
Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M. 2003. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. Journal of Geophysical Research, 108:4098.CrossRefGoogle Scholar
Sageman, B., and Lyons, T. 2004. Geochemistry of fine-grained sediments and sedimentary rocks. Treatise on Geochemistry, 7:116158.Google Scholar
Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., and Pflaumann, U. 1981. Glacial and interglacial wind regimes over the astern subtropical Atlantic and North-West Africa. Nature, 293:193196.CrossRefGoogle Scholar
Scotese, C. R. 2001. Atlas of Earth history. PALEOMAP Project of the University of Texas at Arlington, Arlington, TX.Google Scholar
Schmitz, M. D., and Davydov, V. I. 2012. Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian–Early Permian (Cisuralian) time scale and pan-Euramerican chronostratigraphic correlation. Geological Society of America Bulletin, 124:549577.CrossRefGoogle Scholar
Shao, Y. 2008. Physics and Modelling of Wind Erosion. Springer-Verlag, Berlin.Google Scholar
Shinn, E. A., Smith, G. W., Prospero, J. M., Betzer, P., Hayes, M. L., Garrison, V., and Barber, R. T. 2000. African dust and the demise of Caribbean coral reefs. Geophysical Research Letters, 27:30293032.CrossRefGoogle Scholar
Slomp, C. P., and Van Cappellen, P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295:6486.CrossRefGoogle Scholar
Smalley, I. J. 1966. The properties of glacial loess and the formation of loess deposits. Journal of Sedimentary Petrology, 36:669676.CrossRefGoogle Scholar
Smalley, I. J. 1990. Possible formation mechanisms for the modal coarse silt quartz particles in loess. Quaternary International, 7–8:2327.CrossRefGoogle Scholar
Smalley, I. J. 1995. Making the material; the formation of silt-sized primary mineral particles for loess deposits. Quaternary Science Reviews, 14:645651.CrossRefGoogle Scholar
Smalley, I., O'Hara-Dhand, K., Wint, J., Machalett, B., Jary, Z., and Jefferson, I. 2009. Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation. Quaternary International, 198:718.CrossRefGoogle Scholar
Smith, S. V. 1984. Phosphorous versus nitrogen limitation in the marine environment: Limnology and Oceanography, 29:11491160.CrossRefGoogle Scholar
Soreghan, G. S. 1992. Preservation and paleoclimatic significance of eolian dust in the Ancestral Rocky Mountains province. Geology, 20:11111114.2.3.CO;2>CrossRefGoogle Scholar
Soreghan, G. S., and Soreghan, M. J. 2002. Atmospheric dust and algal dominance in the Late Paleozoic: A hypothesis. Journal of Sedimentary Research, 72:457461.CrossRefGoogle Scholar
Soreghan, G. S., and Cohen, A. S. 2013. Scientific drilling and the evolution of the earth system: climate, biota, biogeochemistry, and extreme events. Scientific Drilling, 16:6372.CrossRefGoogle Scholar
Soreghan, G. S., Elmore, R. D., Katz, B., Cogoini, M., and Banerjee, S. 1997. Pedogenically enhanced magnetic susceptibility variations preserved in Paleozoic loessite: Geology, 25:10031006.2.3.CO;2>CrossRefGoogle Scholar
Soreghan, G. S., Elmore, R. D., and Lewchuk, M. 2002. Sedimentologic-magnetic record of western Pangean climate in upper Paleozoic loessite (lower Cutler beds, Utah). Bulletin of the Geological Society of America, 114:10191035.2.0.CO;2>CrossRefGoogle Scholar
Soreghan, G. S., Moses, A. M., Soreghan, M. J., A, M., Hamilton, , Fanning, C. M., and Link, P. K. 2007. Palaeoclimatic inferences from upper Palaeozoic siltstone of the Earp Formation and equivalents, Arizona–New Mexico (USA). Sedimentology, 54:701719.CrossRefGoogle Scholar
Soreghan, G. S., Soreghan, M. J., and Hamilton, M. A. 2008. Origin and significance of loess in late Paleozoic western Pangaea: A record of tropical cold?. Palaeogeography, Palaeoclimatology, Palaeoecology, 268:234259.CrossRefGoogle Scholar
Soreghan, G. S., Heavens, N., Patterson, E. P., Sano, H., Mahowald, N., Davydov, V., and Soreghan, M. J. 2011. Giant grains from Pennsylvanian dust of the Panthalassic Ocean: Evidence for extreme winds and a Paleo-Tethyan monsoon. AGU Fall Meeting Abstracts, Abstract PP22D–07.Google Scholar
Soreghan, G. S., Joo, Y. J., Madden, M. E. E., and Van Deventer, S. C. 2015. Silt production as a function of climate and lithology under simulated comminution. Quaternary International, 110. doi: 10.1016/j.quaint.2015.05.010.CrossRefGoogle Scholar
Soreghan, M. J., Soreghan, G. S., and Hamilton, M. A. 2002. Paleowinds inferred from detrital-zircon geochronology of upper Paleozoic loessite, western equatorial Pangea. Geology, 30:695698.2.0.CO;2>CrossRefGoogle Scholar
Soreghan, M. J., and Francus, P. 2004. Processing backscattered electron digital images of thin sections, p. 203225 In Francus, P. (ed.), Image Analysis, Sediments and Paleoenvironments. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Soreghan, M. J., and Soreghan, G. S. 2007. Whole-rock geochemistry of upper Paleozoic loessite, western Pangaea: Implications for paleoatmospheric circulation. Earth and Planetary Science Letters, 255:117132.CrossRefGoogle Scholar
Soreghan, M. J., Soreghan, G. S., and Hamilton, M. A. 2008. Glacial-interglacial shifts in atmospheric circulation of western tropical Pangaea. Palaeogeography, Palaeoclimatology, Palaeoecology, 268:260272.CrossRefGoogle Scholar
Soreghan, M. J., Heavens, N., Soreghan, G. S., Link, P. K., and Hamilton, M. A. 2014. Abrupt and high-magnitude changes in atmospheric circulation recorded in the Permian Maroon Formation, tropical Pangaea. Geological Society of America Bulletin, 126:569584.CrossRefGoogle Scholar
Stevens, T., Palk, C., Carter, A., Lu, H., and Clift, P. D. 2010. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons. Geological Society of America Bulletin, 122:13311344.CrossRefGoogle Scholar
Stuut, J.-B., Zabel, M., Ratmeyer, V., Helmke, P., Schefuss, E., Lavik, G., and Schneider, R. 2005. Provenance of present-day eolian dust collected off NW Africa. Journal of Geophysical Research, 110:D04202.CrossRefGoogle Scholar
Sun, , Shaw, D. H. J., An, Z. S., Cheng, M. Y., and Yue, L. P. 1998. Magnetostratigraphy and paleoclimatic interpretation of continuous 7.2 Ma late Cenozoic aeolian sediments from the Chinese Loess Plateau. Geophysical Research Letters, 25:8588.CrossRefGoogle Scholar
Sun, J. 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 203:845859.CrossRefGoogle Scholar
Sun, Y., Lu, H., and An, Z. 2006. Grain size of loess, palaeosol and Red Clay deposits on the Chinese Loess Plateau: Significance for understanding pedogenic alteration and palaeomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 241:129138.CrossRefGoogle Scholar
Sur, S., Soreghan, G., Soreghan, M., Yang, W., and Sailer, A. 2010a. A record of glacial aridity and Milankovitch-scale fluctuations in atmospheric dust from the Pennsylvanian tropics. Journal of Sedimentary Research, 80:10461067.CrossRefGoogle Scholar
Sur, S., Soreghan, M. J., Soreghan, G. S., and Stagner, A. F. 2010b. Extracting the silicate mineral fraction from ancient carbonate: assessing the geologic record of dust. Journal of Sedimentary Research, 80:763769.CrossRefGoogle Scholar
Sweeney, M. R., and Mason, J. A. 2013. Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA. Journal of Geophysical Research Solid Earth, 118:14601471.CrossRefGoogle Scholar
Sweeney, M. R., McDonald, E. V., and Etyemezian, V. 2011. Quantifying dust emissions from desert landforms, eastern Mojave Desert, USA. Geomorphology, 135:2134.CrossRefGoogle Scholar
Sweet, A. C., Soreghan, G. S., Sweet, D. E., Soreghan, M. J., and Madden, A. S. 2013. Permian dust in Oklahoma: Source and origin for Middle Permian (Flowerpot-Blaine) redbeds in Western Tropical Pangaea. Sedimentary Geology, 284–285:181196.CrossRefGoogle Scholar
Taner, M. T. 2000. Attributes Revisited. Technical Publication, Rock Solid Images, Inc., Houston, Texas.Google Scholar
Tegen, I., Lacis, A. A., and Fund, I. 1996. The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380:419422.CrossRefGoogle Scholar
Tegen, I., Harrison, S. P., Kohfeld, K. E., and Werner, M. 2001. Dust deposition and aerosols in the last glacial maximum and their climate effects. Nova Acta Leopoldina, 88:7178.Google Scholar
Thomson, D. J. 1990. Quadratic inverse spectrum estimates: Applications to paleoclimatology. Philosophical Transactions of the Royal Society of London, Series A, 332:539597.Google Scholar
Thomson, D. J. 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70:10551096.CrossRefGoogle Scholar
Tramp, K. L., Soreghan, G. S., and Elmore, R. D. 2004. Paleoclimatic inferences from paleopedology and magnetism of the Permian Maroon Formation loessite, Colorado, USA. Geological Society of America Bulletin, 116:671686.CrossRefGoogle Scholar
TSCreator visualization of enhanced Geologic Time Scale 2012 database (Version 6.3; 2015) James Ogg (database coordinator) and Adam Lugowski (software developer) http://www.tscreator.org.Google Scholar
Warren, A., Chappell, A., Todd, M. C., Bristow, C. S., Drake, N., Englestaedter, S., Martins, V., M'bainayel, S., and Washington, R. 2007. Dust-raising in the dustiest place on earth. Geomorphology, 92:2537.CrossRefGoogle Scholar
Washington, R., Todd, M. C., Lizcano, G., Tegen, I., Flamant, C., Koren, I., Ginoux, P., Engelstaedter, S., Bristow, C. S., Zender, C. S., Goudie, A. S., and Prospero, J. M. 2006. Links between topography, wind, deflation, lakes and dust: the case of the Bodele Depression, Chad. Geophysical Research Letters, 33:L09401.CrossRefGoogle Scholar
Watkins, R., and Wilson, E. C. 1989. Paleoecologic and biogeographic significance of the biostromal organism Palaeoaplysina in the Lower Permian McCloud Limestone, eastern Klamath Mountains, California. Palaios, 4:181192.CrossRefGoogle Scholar
Weaver, J. E., and Harmon, G. W. 1935. Quantity of living plant materials in prairie soil in relation to run-off and soil erosion. Conservation Department of the Conservation and Survey Division of the University of Nebraska Bulletin, 8, 53 p.Google Scholar
Williams, G., 2000. Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit. Reviews of Geophysics, 38:3759.CrossRefGoogle Scholar
Wilson, J. P., and Knoll, A. H. 2010. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology, 36:335355.CrossRefGoogle Scholar
Wright, J., Smith, B., and Whalley, B. 1998. Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations. Geomorphology, 23:1534.CrossRefGoogle Scholar
Wright, J. S. 2001. Making loess-sized quartz silt: data from laboratory simulations and implications for sediment transport pathways and the formation of “desert” loess deposits associated with the Sahara. Quaternary International, 76–77:719.CrossRefGoogle Scholar
Yaalon, D. H. 1974. Accumulation and distribution of loess-derived deposits in the semi-desert and desert fringe areas of Israel. Geomorphology, 20:91105.Google Scholar
Yaalon, D. H., and Ganor, E. 1973. The influence of dust on soils in the Quaternary. Soil Science, 116:146155.CrossRefGoogle Scholar
Yao, X., Zhou, Y., and Hinnov, L. A. 2015. Astronomical forcing of Middle Permian chert in the Lower Yangtze area, South China. Earth and Planetary Science Letters, 422:206221.CrossRefGoogle Scholar
Yeager, S. G., Shields, C. A., Large, W. G., and Hack, J. J. 2006. The low-resolution CCSM3. Journal of Climate, 19:25452566.CrossRefGoogle Scholar
Yoshioka, M., Mahowald, N. M., Conley, A. J., Collins, W. D., Fillmore, D. W., Zender, C. S., and Coleman, D. B. 2007. Impact of desert dust radiative forcing on Sahel precipitation: relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. Journal of Climate, 20:14451467.CrossRefGoogle Scholar
Zender, C. S., Bian, H., and Newman, D. 2003a. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. Journal of Geophysical Research, 108:4416.CrossRefGoogle Scholar
Zender, C. S., Newman, D., and Torres, O. 2003. Spatial heterogeneity in aeolian erodibility: uniform, topographic, geomorphic, and hydrologic hypotheses. Journal of Geophysical Research, 108:4543.CrossRefGoogle Scholar
Ziegler, A. M., Hulver, M. J., and Rowley, D. B. 1997. Permian world topography and climate, p. 111146 In Martini, L. P. (ed.), Late Glacial and Postglacial Environmental Changes: Quaternary, Carboniferous–Permian, and Proterozoic. Oxford University Press, Oxford, United Kingdom.Google Scholar