Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:57:04.014Z Has data issue: false hasContentIssue false

Reconstructing Terrestrial Environments Using Stable Isotopes in Fossil Teeth and Paleosol Carbonates

Published online by Cambridge University Press:  21 July 2017

Benjamin H. Passey*
Affiliation:
Department of Earth and Planetary Sciences, Johns Hopkins University 3400 N. Charles St., Baltimore, MD, 21218 USA. bhpassey@jhu.edu
Get access

Abstract

Carbon isotopes in Neogene-age fossil teeth and paleosol carbonates are commonly interpreted in the context of past distributions of C3 and C4 vegetation. These two plant types have very different distributions in relation to climate and ecology, and provide a robust basis for reconstructing terrestrial paleoclimates and paleoenvironments during the Neogene. Carbon isotopes in pre-Neogene fossil teeth are usually interpreted in the context of changes in the δ13C value of atmospheric CO2, and variable climate-dependent carbon-isotope discrimination in C3 plants. Carbon isotopes in pre-Neogene soil carbonates can be used to estimate past levels of atmospheric CO2. Oxygen isotopes in fossil teeth and paleosol carbonates primarily are influenced by the oxygen isotopic compositions of ancient rainfall and surface waters. The oxygen isotopic composition of rainfall is has a complex, but tractable, relationship with climate, and variably relates to temperature, elevation, precipitation amount, and other factors. Mammal species that rely on moisture in dietary plant tissues to satisfy their water requirements (rather than surface drinking water) may have oxygen isotopic compositions that track aridity. Thus, oxygen isotopes of fossil mammals can place broad constraints on paleoaridity. Carbonate clumped isotope thermometry allows for reconstruction of soil temperatures at the time of pedogenic carbonate mineralization. The method is unique because it is the only thermodynamically based isotopic paleothermometer that does not require assumptions about the isotopic composition of the fluid in which the archive mineral formed. Soil temperature reflects a complex interplay of air temperature, solar radiative heating, latent heat effects, soil thermal diffusivity, and seasonal variations of these parameters. Because plants and most animals live in and/or near the soil, soil temperature is an important aspect of terrestrial (paleo)climate.

Type
Research Article
Copyright
Copyright © 2012 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affek, H. P., Bar-Matthews, M., Ayalon, A., Matthews, A., and Eiler, J. M. 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry. Geochimica et Cosmochimica Acta, 72:53515360.Google Scholar
Ayliffe, L. K., and Chivas, A. R. 1990. Oxygen isotope composition of the bone phosphate of Australian kangaroos: Potential as a paleoenvironmental recorder. Geochimica et Cosmochimica Acta, 54:26032609.CrossRefGoogle Scholar
Balasse, M. 2002. Reconstructing dietary and environmental history from enamel and isotopic analysis: Time resolution of intra-tooth sequential sampling. International Journal of Osteoarchaeology, 12:155165.Google Scholar
Bershaw, J., Garzione, C. N., Higgins, P., MacFadden, B. J., Anaya, F., and Alvarenga, H. 2010. Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth and Planetary Science Letters, 289:530538.Google Scholar
Bowen, G. J. 2010. Isoscapes: Spatial patterns in isotopic biogeochemistry. Annual Review of Earth and Planetary Sciences, 38:161187.CrossRefGoogle Scholar
Brand, W. A., Assonov, S. S., and Coplen, T.B. 2010. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure and Applied Chemistry, 82:17191733.CrossRefGoogle Scholar
Brand, W. A., and Coplen, T. B. 2012. Stable isotope deltas: tiny, yet robust signatures in nature. Isotopes in Environmental and Health Studies. http://dx.doi.org/10.1080/10256016.2012.666977.Google Scholar
Breecker, D. O., Sharp, Z. D., and McFadden, L. D. 2009. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological of Society of America Bulletin, 121:630640.Google Scholar
Bryant, J. D., and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta, 59:45234537.Google Scholar
Cabido, M., Ateca, N., Astegiano, M. E., and Anton, A. M. 1997. Distribution of C3 and C4 grasses along an altitudinal gradient in Central Argentina. Journal of Biogeography, 24:197204.Google Scholar
Capo, R. C., Whipkey, C. E., Blachere, J. R., and Chadwick, O. A. 2000. Pedogenic origin of dolomite in a basaltic weathering profile, Kohala peninsula, Hawaii. Geology, 28:271274.Google Scholar
Cavagnaro, J. B. 1988. Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia, 76:273277.Google Scholar
Cerling, T. E. 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71:229240.CrossRefGoogle Scholar
Cerling, T. E. 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. American Journal of Science, 291:377400.Google Scholar
Cerling, T. E. 1999. Stable carbon isotopes in paleosol carbonates. In Thiry, M., and Simon-Coinçon, R., eds., Paleoweathering, Paleosurfaces and Related Continental Deposits. Special Publications, International Association of Sedimentologists, 27:4360.Google Scholar
Cerling, T. E., and Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia, 120:347363.CrossRefGoogle ScholarPubMed
Cerling, T. E., Harris, J. M., and Passey, B. H. 2003. Diets of East African bovidae based on stable isotope analysis. Journal of Mammalogy, 84:456470.Google Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenman, V., and Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature, 389:153158.Google Scholar
Cerling, T. E., Levin, N. E., Quade, J., Wynn, J. G., Fox, D. L., Kingston, J. D., Klein, R. G., and Brown, F. H. 2010. Comment on the paleoenvironment of Aridpithecus ramidus . Science, 328:1105d.Google Scholar
Cerling, T. E. and Quade, J. 1993. Stable carbon and oxygen isotopes in soil carbonates, p. 217231 In Swart, P. K., Lohmann, K. C., McKenzie, J. A., and Savin, S., (eds.). Climate Change in Continental Isotopic Records. American Geophysical Union.Google Scholar
Coplen, T. B. 1995. Discontinuance of SMOW and PDB. Nature, 375:285.CrossRefGoogle Scholar
Coplen, T. B. 2011. Guidelines and recommended terms for expression of stable isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25:25382560.CrossRefGoogle ScholarPubMed
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus, 16:436468.Google Scholar
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M. 2011. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2 . Geochimica et Cosmochimica Acta, 75:71177131.Google Scholar
Dennis, K. J., and Schrag, D. P. 2010. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochimica et Cosmochimica Acta, 74:41104122.Google Scholar
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., and Freeman, K. H. 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences, USA, 107:57385743.Google Scholar
Eagle, R. A., Schauble, E. A., Tripati, A. K., Tütken, T., Hulbert, R. C., and Eiler, J. M. 2010. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in apatite. Proceedings of the National Academy of Sciences, USA, 107:1037710382.Google Scholar
Eagle, R. A., Tütken, T., Martin, T. S., Tripati, A. K., Fricke, H. C., Connely, M., Cifelli, R. L., and Eiler, J. M. 2011. Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals. Science, 333:443445.Google Scholar
Edwards, E. J., Osborne, C. P., Stromberg, C. A. E., Smith, S. A., and C4 Grasses Consortium. 2010. The origins of C4 grasslands: Integrating evolutionary and ecosystem science. Science, 328:587591.CrossRefGoogle ScholarPubMed
Ehleringer, J. R., Cerling, T. E., and Helliker, B. R. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112:285299.Google Scholar
Ekart, D. D., Cerling, T. E., Montanez, I. P., and Tabor, N. J. 1999. A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide. American Journal of Science, 299:805827.Google Scholar
Elliott, J. C. 2002. Calcium phosphate biominerals. Reviews in Mineralogy and Geochemistry, 48:427454.Google Scholar
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. Carbon isotope discrimination and photosynthesis. Annual Reviews of Plant Physiology and Molecular Biology, 40:503537.Google Scholar
Feranec, R.S., Hadly, E. A., and Paytan, A. 2008. Stable isotopes reveal seasonal competition for resources between late Pleistocene bison (Bison) and horse (Equus) from Rancho La Brea, southern California. Palaeogeography, Palaeoclimatology, Palaeoecology, 271:153160.Google Scholar
Fox, D. L., and Koch, P. L. 2003. Tertiary history of C4 biomass in the Great Plains, USA. Geology, 31:809812.Google Scholar
Fox, D.L., Honey, J. G., Martin, R. A., and Peláez-Campomanes, P. 2012. Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Carbon isotopes and the evolution of C4-dominated grasslands. Geological Society of America Bulletin, 124:444462.Google Scholar
Fricke, H. C., and O'Neil, J. R. 1999. The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters, 170:181196.Google Scholar
Garzione, C. N., Dettman, D. L., Quade, J., De-Celles, P. G., and Butler, R. F. 2000. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology, 28:339342.Google Scholar
Gehler, A., Tütken, T., and Pack, A. 2011. Triple oxygen isotope analysis of bioapatite as a tracer for diagenetic alteration of bones and teeth. Palaeogeography, Palaeoclimatology, Palaeoecology, 310:8491.Google Scholar
Geiger, R., Aron, R. H., and Todhunter, P. 2009. The climate near the ground, 7th edition. Rowman & Littlefield, Lanham, MD.Google Scholar
Ghosh, P., Garzione, C. N. and Eiler, J. M. 2006a. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311:511515.Google Scholar
Ghosh, P., Adkins, J., Affek, H. P., Balta, B., Guo, W., Schauble, E. A., Schrag, D., and Eiler, J. M. 2006b. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70:14391456.Google Scholar
Guo, W., Mosenfelder, J. L., Goddard, W. A. III, and Eiler, J. M. 2009. Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: insights from first-principles theoretical modeling and clumped isotope measurements. Geochimica et Cosmochimica Acta, 73:72037225.Google Scholar
Hackstein, J. H. P. and van Alen, T. A. 1996. Fecal methanogens and vertebrate evolution. Evolution, 50:559572.Google Scholar
Harris, J. M., and Cerling, T. E. 2002. Dietary adaptations of extant and Neogene African suids. Journal Zoology, London, 256:4554.Google Scholar
Hattersley, P.W. 1983. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia, 57:113128.Google Scholar
Helliker, B. R., and Ehleringer, J. R. 2001. Grass blades as tree rings: environmentally induced changes in the oxygen isotope ratio of cellulose along the length of grass blades. New Phytologist, 155:417424.Google Scholar
Huntington, K. W., Budd, D. A., Wernicke, B. P., and Eiler, J. M. 2011. Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. Journal of Sedimentary Research, 81:656669.Google Scholar
Jury, W. A., and Horton, R. 2004. Soil Physics, 6th edition. John Wiley & Sons, Hoboken, NJ.Google Scholar
Kearsey, T., Twitchett, R. J., and Newell, A. J. 2012. The origin and significance of pedogenic dolomite from the Upper Permian of the South Urals of Russia. Geological Magazine, 149:291307.Google Scholar
Kessler, J. L. P., Soreghan, G. S., and Wacker, H. J. 2001. Equatorial aridity in western Pangea: Lower Permian loessite and dolomitic paleosols in northeastern New Mexico, USA. Journal of Sedimentary Research, 71:817832.Google Scholar
Kim, S.-T., and O'Neil, J. R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonate. Geochimica et Cosmochimica Acta, 61:34613475.Google Scholar
Koch, P. L., Fisher, D. C., and Dettman, D. 1989. Oxygen isotope variation in the tusks of extinct proboscideans: A measure of season of death and seasonality. Geology, 17:515519.Google Scholar
Koch, P. L., Zachos, J. C., and Gingerich, P. D. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature, 358:319322.Google Scholar
Koch, P. L., Zachos, J. C., and Dettman, D. L. 1995. Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 115:6189.Google Scholar
Koch, P. L. 1998 Isotopic reconstruction of past continental environments. Annual Reviews of Earth and Planetary Science, 26:573613.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta, 60:48114829.Google Scholar
Kohn, M.J., and Cerling, T. E. 2002. Stable isotope compositions of biological apatites. Reviews in Mineralogy and Geochemistry, 48:455488.Google Scholar
Kohn, M. J. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences, USA., 107:1969119695.CrossRefGoogle ScholarPubMed
Kohut, C., Muelenbachs, K., and Dudas, M. J. 1995. Authigenic dolomite in a saline soil in Alberta, Canada. Soil Science Society of America Journal, 59:14991504.Google Scholar
Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., and Ehleringer, J. R. 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences, USA, 103:1120111205.Google Scholar
Luz, B., Kolodny, Y., and Horowitz, M. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta,. 48:16891693.Google Scholar
Luz, B., Cormie, A. B., and Schwarcz, H. P. H.P. 1990. Oxygen isotope variations in phosphate of deer bones. Geochimica et Cosmochimica Acta, 54:17231728.CrossRefGoogle Scholar
MacFadden, B. J. 2008. Geographic variation in diets of ancient populations of 5-million-year-old (early Pliocene) horses from southern North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 266:8394.Google Scholar
Montanez, I. P., Tabor, N. J., Niemeier, D., Di-Michele, W. A., Frank, T. D., Fielding, C. R., Isbell, J. L., Birgenheier, L. P., and Rygel, M. C. 2007. CO2-forced climate and vegetation instability during late Paleozoic deglaciation. Science, 315:8791.Google Scholar
O'Neil, J. R., Roe, L. J., Reinhard, E., and Blake, R. E. 1994. A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel Journal of Earth Science, 43:203212.Google Scholar
Passey, B. H., Cerling, T. E., Perkins, M. E., Voorhies, M. R., Harris, J. M., and Tucker, S. T. 2002. Environmental change in the Great Plains: An isotopic record from fossil horses. Journal of Geology, 110:123140.Google Scholar
Passey, B. H., and Cerling, T. E. 2002. Tooth enamel mineralization in ungulates: Implications for recovering a primary isotopic time-series. Geochimica et Cosmochimica Acta, 66:32253234.Google Scholar
Passey, B. H., Robinson, T. F., Ayliffe, L. K., Cerling, T. E., Sponheimer, M., Dearing, M. D., Roeder, B. L., and Ehleringer, J. R. 2005. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science, 32:14591470.Google Scholar
Passey, B. H., and Cerling, T. E. 2006. In situ stable isotope analysis (δ13C, δ18O) of very small teeth using laser ablation GC/IRMS. Chemical Geology, 235:238249.Google Scholar
Passey, B. H., Cerling, T. E., and Levin, N. E. 2007. Temperature dependence of oxygen isotope acid fractionation for modern and fossil tooth enamels. Rapid Communications in Mass Spectrometry, 21:28532859.Google Scholar
Passey, B. H., Ayliffe, L. K., Kaakinen, A., Zhang, Z. Q., Eronen, J. T., Zhu, Y. M., Zhou, L. P., Cerling, T. E., and Fortelius, M. 2009. Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio–Pliocene fossil mammals and soil carbonates from northern China. Earth and Planetary Science Letters, 277:443452.Google Scholar
Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., and Eiler, J. M. 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences, USA, 107:1124511249.Google Scholar
Pausata, F. S. R., Battisi, D. S., Nisancioglu, K. H., and Bitz, C. M. 2011. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience, 4:474480.Google Scholar
Peters, N., Huntington, K., and Hoke, G. 2010. Clumped-isotope thermometry of pedogenic carbonates: quantifying the influence of climate, seasonality, and altitude in the south central Andes, Argentina. Geological Society of America Abstracts with Programs, v. 42, no. 5.Google Scholar
Podlesak, D. W., Torregrossa, A.-M., Ehleringer, J. R., Dearing, M. D., Passey, B. H., and Cerling, T. E. 2007. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal. Geochimica et Cosmochimica Acta, 72:1935.Google Scholar
Quade, J., Cerling, T. E., and Bowman, J. R. 1989. Systematic variation in the carbon and oxygen isotopic composition of Holocene soil carbonate along elevation transects in the southern Great Basin, USA. Geological Society of America Bulletin, 101:464475.Google Scholar
Quade, J., Garzione, C., and Eiler, J. 2007. Paleoelevation reconstruction using pedogenic carbonate. Kohn, M., editor, Paleoaltimetry: Geochemical and Thermodynamic Approaches. Review of Mineralogy and Geochemistry, 66:5387.Google Scholar
Quade, J., Breecker, D. O., Daëron, M., and Eiler, J. M. 2011. The paleoaltimetry of Tibet: An isotopic perspective. American Journal of Science, 311:77115.Google Scholar
Quade, J., Eiler, J. M., and Daëron, M. 2011. Clumped isotopes in soil carbonate. American Geophysical Union, Fall Meeting 2011, PP51B-1833.Google Scholar
Roden, J. S., and Ehleringer, J. R. 1999. Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide-ranging environmental conditions. Plant Physiology, 120:11651173.Google Scholar
Romanek, C. S., Grossman, E. L. and Morse, J. W., W, J. 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta, 56:419430.Google Scholar
Rowley, D. B., and Currie, B. S. 2006, Palaeoaltimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439:677681.Google Scholar
Royer, D. L., 1999, Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology, 27:11231126.Google Scholar
Rundel, P. W., 1980, The ecological distribution of C4 and C3 grasses in the Hawaiian Islands. Oecologia, 45:354359.Google Scholar
Schauble, E. A., Ghosh, P., and Eiler, J. M. 2006. Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochimica et Cosmochimica Acta, 70:25102529.Google Scholar
Schmid, T. W., and Bernasconi, S. M. 2010. An automated method for ‘clumped-isotope’ measurements on small carbonate samples. Rapid Communications in Mass Spectrometry, 24:19551963.Google Scholar
Secord, R., Gingerich, P. D., Lohmann, K. C., and MacLeod, K. G. 2010. Continental warming preceding the Palaeocene–Eocene thermal maximum. Nature, 467:955958.Google Scholar
Secord, R., Bloch, J. I., Chester, S. G. B., Boyer, D. M., Wood, A. R., Wing, S. L., Kraus, M. J., McInerney, F. A., and Krigbaum, J. 2012. Evolution of the earliest horses driven by climate change in the Paleocene–Eocene thermal maximum. Science, 335:959962.Google Scholar
Sharp, Z. D. 2007. Principles of Stable Isotope Geochemistry. Pearson Prentice Hall, Upper Saddle River, New Jersey. 344p.Google Scholar
Sharp, Z. D., and Cerling, T. E. 1996. A laser GCIRMS technique for in situ stable isotope analyses of carbonates and phosphates. Geochimica et Cosmochimica Acta, 60:29092916.Google Scholar
Sheldon, N. D., and Tabor, N. J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science Reviews 95, 152.Google Scholar
Still, C. J., Berry, J. A., Collatz, J. A., and De-Fries, R. S. 2003. Global distribution of C3 and C4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles, 17:1006.Google Scholar
Sponheimer, M., Lee-Thorp, J. A., DeRuiter, D. J., Smith, J. M., van der Merwe, N. J., Reed, K., Grant, C. C., Ayliffe, L. K., Robinson, T. F., Heidelberger, C., and Marcus, W. 2003. Diets of southern African bovidae: Stable isotope evidence. Journal of Mammalogy, 84:471479.Google Scholar
Suarez, M. B., Passey, B. H., and Kaakinen, A. 2011. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene. Geology, 39:11511154.Google Scholar
Swart, P. K., Burns, S. J., and Leder, J. J. 1991. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology (Isotope Geoscience Section), 86:8996.Google Scholar
Teeri, J. A., and Stowe, L. G. 1976. Climatic patterns and the distribution of C4 grasses in North America. Oecologia, 23:112.Google Scholar
Tieszen, L. L., Senyimba, M. M., Imbamba, S. K., and Troughton, J. H. 1979. The distribution of C3 and C4 grasses and carbon isotopic discrimination along an altitudinal and moisture gradient in Kenya. Oecologia, 37:337350.Google Scholar
Tipple, B. J., and Pagani, M. 2007. The early origins of terrestrial C4 photosynthesis. Annual Reviews of Earth and Planetary Science, 35:435461.Google Scholar
Tipple, B. J., Meyers, S. R., and Pagani, M. 2010. Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies. Paleoceanography, 25, PA3202.Google Scholar
Tütken, T., Vennemann, T. W., Janz, H., and Heizmann, E. P. J. 2006. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: A reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology, 241:457491.Google Scholar
Ungar, P. S., and Sponheimer, M. 2011. The diets of early hominins. Nature, 334:190193.Google Scholar
Uno, K. T., Cerling, T. E., Harris, J. M., Kunimatsu, Y., Leakey, M. G., Nakatsikasa, M., and Nakaya, H. 2011. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proceedings of the National Academy of Sciences, USA, 108:65096514.Google Scholar
VanDeVelde, J. H., Bowen, G. J., and Passey, B. H. 2010. A clumped isotope hydroclimatologic record through the Paleocene–Eocene thermal maximum in southwestern North America. Geological Society of America Annual Meeting, Denver, Colorado, USA.Google Scholar
Vennemann, T. W., Fricke, H. C., Blake, R. E., O'Neil, J. R., and Colman, A. 2002. Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4 . Chemical Geology, 185:321336.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F. Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161:5999.Google Scholar
Wynn, J. G., 2007. Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: Implications for paleoecological interpretations of paleosols. Palaeogeography, Palaeoclimatoloty, Palaeoecology, 251:437448.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:686693.Google Scholar
Zazzo, A., Balasse, M., Passey, B. H., Moloney, A. P., Monahan, F. J., and Schmidt, O. 2010. The isotope record of short- and long-term dietary changes in sheep tooth enamel: Implications for quantitative reconstruction of paleodiets. Geochimica et Cosmochimica Acta 74, 35713586.Google Scholar