Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T18:09:51.311Z Has data issue: false hasContentIssue false

Oxygen Isotopes in Foraminifera: Overview and Historical Review

Published online by Cambridge University Press:  21 July 2017

Paul N. Pearson*
Affiliation:
School of Earth and Ocean Sciences, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom pearsonp@cardiff.ac.uk
Get access

Abstract

Foraminiferal tests are a common component of many marine sediments. The oxygen isotope ratio (δ18O) of test calcite is frequently used to reconstruct aspects of their life environment. The δ18O depends mainly on the isotope ratio of the water it is precipitated from, the temperature of calcification, and, to a lesser extent, the carbonate ion concentration. Foraminifera and other organisms can potentially preserve their original isotope ratio for many millions of years, although diagenetic processes can alter the ratios. Work on oxygen isotope ratios of foraminifera was instrumental in the discovery of the orbital theory of the ice ages and continues to be widely used in the study of rapid climate change. Compilations of deep sea benthic foraminifer oxygen isotopes have revealed the long history of global climate change over the past 100 million years. Planktonic foraminifer oxygen isotopes are used to investigate the history of past sea surface temperatures, revealing the extent of past ‘greenhouse’ warming and global sea surface temperatures.

Type
Research Article
Copyright
Copyright © 2012 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, S., Keller, G., Stuben, D., and Berner, Z. 2003. Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 202:129.CrossRefGoogle Scholar
Adams, C. G., Lee, D. E., and Rosen, B. R. 1990. Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary. Palaeogeography, Palaeoclimatology, Palaeoecology, 77:289313.CrossRefGoogle Scholar
Allègre, C. 2008. Isotope Geology. Cambridge University Press, Cambridge, 512 p.CrossRefGoogle Scholar
Ando, A., Huber, B.T., and Macleod, K.G. 2010. Depth-habitat reorganization of planktonic foraminifera across the Albian/Cenomanian boundary. Paleobiology, 36:357373.CrossRefGoogle Scholar
Aurahs, R., Göker, M., Grimm, G. W., Hemleben, V., Hemleben, C., Schiebel, R., and Kučera, M. 2009. Using the multiple analysis approach to reconstruct relationships among planktonic foraminifera from highly divergent and length-polymorphic SSU rDNA sequences. Bioinformatics and Biology Insights, 3:155157.Google Scholar
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N. 2011. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biological Reviews, 86:900927.CrossRefGoogle ScholarPubMed
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C. J. 2003. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta, 67:31813199.Google Scholar
Barras, C., Duplessy, J.-C., Geslin, E., Michel, E., and Jorissen, F. J. 2010. Calibration of δ18O of cultured benthic foraminiferal calcite as a function of temperature. Biogeosciences, 7:13491356.CrossRefGoogle Scholar
Barron, E. J. 1987. Eocene equator-to-pole surface ocean temperatures: a significant climate problem? Paleoceanography, 2:729739.CrossRefGoogle Scholar
Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton, N. J., and Lancelot, Y. 1994. The astronomical theory of climate change and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters, 126:91108.Google Scholar
, A. W. H. 1980. Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady). Marine Micropaleontology, 5:283310.Google Scholar
, A. W. H., Morse, J. W., and Harrison, S. M. 1975. Progressive dissolution and ultrastructural breakdown of planktonic foraminifera, p. 2755 In Sliter, W. V., , A. W. H., and Berger, W. H. (eds.). Dissolution of Deep Sea Carbonates. Cushman Foundation for Foraminiferal Research, Special Publication, No. 13.Google Scholar
Beck, W. C., Grossman, E. L., and Morse, J. W. 2005. Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochimica et Cosmochimica Acta, 69:34933503.Google Scholar
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W. 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised palaeotemperature equations. Paleoceanography, 13:150160.CrossRefGoogle Scholar
Bentov, S., Brownlee, C., and Erez, J. 2009. The role of seawater endocytosis in the biomineralization process in calcareous foraminifera. Proceedings of the National Academy of Sciences, 106:2150021504.Google Scholar
Berger, W. H. 1971. Sedimentation of planktonic foraminifera. Marine Geology, 11:325358.Google Scholar
Berger, W. H. 1979a. Preservation of foraminifera, p. 105155 In Lipps, J., Berger, W. H., Buzas, M. A., Douglas, R. G., and Ross, C. A. (eds.). Foraminiferal Ecology and Paleoecology, SEPM Short Course No. 6. Society of Economic Paleontologists and Mineralogists, Houston, TX.CrossRefGoogle Scholar
Berger, W. H. 1979b. Stable isotopes in foraminifera, p. 156198 In Lipps, J., Berger, W. H., Buzas, M. A., Douglas, R. G., and Ross, C. A. (eds.). Foraminiferal Ecology and Paleoecology, SEPM Short Course No. 6. Society of Economic Paleontologists and Mineralogists, Houston, TX.CrossRefGoogle Scholar
Bice, K. L., Birgel, D., Meyers, P. A., Dahl, K. A., Hinrichs, K.-U., and Norris, R. D. 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography, 21: doi:10.1029/2005PA001203.CrossRefGoogle Scholar
Bice, K. L., Huber, B. T., and Norris, R. D. 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography, 18, doi:10.1029/2002PA000848.Google Scholar
Bice, K. L., Scotese, C. R., Seidov, D., and Barron, E. J. 2000. Quantifying the role of geographic change in Cenozoic ocean transport using uncoupled atmosphere and ocean models. Palaeogeography, Palaeoclimatology, Palaeoecology, 161:295310.Google Scholar
Bigg, G. R., and Rohling, E. J. 2000. An oxygen isotope dataset for marine waters. Journal of Foraminiferal Research, 105:85278536.Google Scholar
Bijma, J., Spero, H. J., and Lea, D. W. 1999. Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results), p. 489512 In Fischer, G. (ed.). Use of Proxies in Paleoceanography: Examples for the South Atlantic. Springer Verlag, Berlin.CrossRefGoogle Scholar
Billups, K., and Schrag, D. P. 2002. Paleotempertures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography, 17:doi:10.1029/2000PA000567.Google Scholar
Birch, H., Coxall, H. K., Pearson, P. N., and Kroon, D. Submitted. Planktonic foraminiferal stable isotopes: ecological niches and disequilibrium fractionation effects. Marine Micropaleontology.Google Scholar
Bissett, A., Neu, T. R., and De Beer, D. 2011. Dissolution of calcite in the twilight zone: bacterial control of dissolution of sinking planktonic carbonates is unlikely. PLoS ONE 6(11):e26404. doi:10.1371/journal.pone.0026404.Google Scholar
Boersma, A., Premoli Silva, I. and Shackleton, N. J. 1987. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography, 2:287331.Google Scholar
Boersma, A., Shackleton, N. J., Hall, M. A., and Given, Q. 1979. Carbon and oxygen isotope records at DSDP Site 384 (North Atlantic) and some Paleocene paleotemperatures and carbon isotope variations in the Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project, 43:695715.Google Scholar
Bohaty, S. M., Zachos, J. C., and Delaney, M. L. 2012. Foraminiferal Mg/Ca evidence for Southern Ocean cooling during the Eocene—Oligocene transition. Earth and Planetary Science Letters, 317–318:251261.Google Scholar
Bornemann, A., Norris, R. D., Friedrich, O., Beckmann, B., Schouten, S., Sinnninge Damsté, J. S., Vogel, J., Hofmann, P., and Wagner, T. 2008. Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science, 319:189192.Google Scholar
Bouvier-Soumagnac, Y., and Duplessy, J.-C. 1985. Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment; implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. Journal of Foraminiferal Research, 15:302320.Google Scholar
Bralower, T. J., Zachos, J. C., Thomas, E., Parrow, M., Paull, C. K., Kelly, D. C., Premoli Silva, I., Sliter, W. V., and Lohmann, K. C. 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography, 10:841865.CrossRefGoogle Scholar
Broecker, W. S. 1989. The salinity contrast between the Atlantic and Pacific oceans during glacial time. Paleoceanography, 4:207212.CrossRefGoogle Scholar
Broecker, W. S. 1998. Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography, 13:doi:10.1029/97PA03707.Google Scholar
Broecker, W. S., and Peng, T.-H. 1982. Tracers in the Sea. Eldigio Press, Lamont Doherty Geological Observatory, 690 pp.Google Scholar
Burgess, C. E., Pearson, P. N., Lear, C. H., Morgans, H. E. G., Handley, L., Pancost, R. D., and Schouten, S. 2008. Middle Eocene climate cyclicity in the southern Pacific: Implications for global ice volume. Geology, 36:651654.Google Scholar
Bush, A. B. G., and Philander, S. G. H. 1997. The late Cretaceous: simulation with a coupled atmosphere-ocean general circulation model. Paleoceanography, 12:495516.Google Scholar
Clark, P. U., Pisias, N. G., Stocker, T. F., and Weaver, A. J. 2002. The role of the thermohaline circulation in abrupt climate change. Nature, 415:863869.Google Scholar
Clement, A. C., and Peterson, L. C. 2006. Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46: RG4002, doi:10.1029/2006RG000204.Google Scholar
CLIMAP Project Members. 1976. The surface of the ice age earth. Science, 191:11311137.Google Scholar
Coplen, T. B. 1994. Reporting of stable hydrogen, carbon, and oxygen abundances. Pure and Applied Chemistry, 2:273276.Google Scholar
Corfield, R. M., and Cartlidge, J. E. 1991. Isotopic evidence for the depth stratification of fossil and recent Globigerinina: a review. Historical Biology, 5:3763.Google Scholar
Corfield, R. M., Hall, M. A., and Brasier, M. D. 1990. Stable isotope evidence for foraminiferal habitats during the Cenomanian / Turonian anoxic event. Geology, 18:175178.Google Scholar
Costa, K. B., Toledo, F. A. L., Pivel, M. A. G., Moura, C. A. V., and Chemale, F. 2006. Evaluation of two genera of benthic foraminifera for down-core paleotempertaure studies in the western South Atlantic. Brazilian Journal of Oceanography, 54:7584.Google Scholar
Coxall, H. K., Pearson, P. N., Shackleton, N. J., and Hall, M. A. 2000. Hantkeninid depth adaptation: an evolving life strategy in a changing ocean. Geology, 28:8790.Google Scholar
Coxall, H., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433:5357.Google Scholar
Coxall, H. K., Wilson, P. A., Pearson, P. N., and Sexton, P. F. 2007. Iterative evolution of digitate planktonic foraminifera. Paleobiology, 33:495516.Google Scholar
Craig, H. 1953. The geochemistry of stable isotopes of carbon. Geochimica et Cosmochimica Acta, 3:5372.Google Scholar
Craig, H. 1965. Measurement of oxygen isotope paleotemperatures, p. 162182 In Tongiorgi, E. (ed.). Stable Isotopes in Oceanographic Studies and Paleotemperatures. Cons. Naz. Delle Ric., Spoleto, Italy.Google Scholar
Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright, J. D. 2011. Late Cretaceous—Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. Journal of Geophysical Research, 116:C12023, doi:10.1029/2011JC007255.Google Scholar
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. W., and Miller, K. G. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24:PA4216, doi:10.1029/2008PA001683.Google Scholar
Croll, J. 1875. Climate and Time, in their Geological Relations: A Theory of Secular Changes of the Earth's Climate. Daldy, Tbister and Company, London, 577 p.Google Scholar
Cronin, T. 1999. Principles of Paleoclimatology, Columbia University Press, New York, 560 p.Google Scholar
Crowley, T. J., and Hyde, W. T. 2008. Transient nature of late Pleistocene climate variability. Nature, 456:226230.Google Scholar
Crowley, T. J., and Zachos, J. C. 2000. Comparison of zonal temperature profiles for past warm time periods, p. 5076 In Huber, B. T., MacLeod, K. G., and Wing, S. L. (eds.). Warm Climates in Earth History, Cambridge University Press, Cambridge UK.Google Scholar
Curry, W. B., and Crowley, T. J. 1987. The δ13C of equatorial Atlantic surface waters: Implications for Ice Age pCO2 levels. Paleoceanography, 2:489517.Google Scholar
Curry, W. B., Thunell, R. C., and Honjo, S. 1983. Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps. Earth and Planetary Science Letters, 64:3343.Google Scholar
Cutler, K. B., Edwards, R. L., Taylor, F. W., Cheng, H., Adkins, J., Gallup, C. D., Cutler, P. M., Burr, G. S., and Bloom, A. L. 2003. Rapid sea-level fall and deep ocean temperature change since the last interglacial period. Earth and Planetary Science Letters, 206:253271.Google Scholar
Dansgaard, W., Johnson, S. J., and Miller, J. 1969. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet. Science, 166:377380.Google Scholar
Dansgaard, W., and Tauber, H. 1969. Glacier oxygen-18 content and Pleistocene ocean temperatures. Science, 166:499502.Google Scholar
Darling, K. F., and Wade, C. M. 2008. The genetic diversity of planktonic foraminifera and the global distribution of ribosomal genotypes. Marine Micropaleontology, 67:216238.Google Scholar
De Vargas, C., Norris, R., Zaninetti, L., Gibb, S. W., and Pawlowski, J. 1999. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proceedings of the National Academy of Sciences, 96:28642868.Google Scholar
Deconto, R. M., Pollard, D., Wilson, P. A., Palike, H., Lear, C. H., and Pagani, M. 2008. Thresholds for Cenozoic bipolar glaciation. Nature, 455:652656.Google Scholar
Deuser, W. G., and Ross, E. H. 1989. Seasonally abundant planktonic foraminifera of the Sargasso Sea: Succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. Journal of Foraminiferal Research, 19:268293.Google Scholar
Devereux, L. 1967. Oxygen isotope paleotemperature measurements on New Zealand Tertiary fossils. New Zealand Journal of Science, 10:9881011.Google Scholar
D'Hondt, S., and Arthur, M. A. 1995. Interspecies variation in stable isotopic signals of Maastrichtian planktonic foraminifera. Paleoceanography, 10:123135.Google Scholar
D'Hondt, S., and Arthur, M. A. 1996. Late Cretaceous oceans and the cool tropic paradox. Science, 271:18381841.Google Scholar
Dokken, T. M., and Janssen, E. 1999. Rapid change in the mechanism of ocean convection during the glacial period. Nature, 401:458461.Google Scholar
Douglas, R. G., and Savin, S. M. 1971. Isotopic ananlyses of planktonic forminifera from the Cenozoic of the northwest Pacific, Leg 6. Initial Reports of the Deep Sea Drilling Project, 6:11231127.Google Scholar
Douglas, R. G., and Savin, S. M. 1973. Oxygen and carbon isotope analysis of Cretaceous and Tertiary foraminifera from the central north Pacific. Initial Reports of the Deep Sea Drilling Project, 17:591605.Google Scholar
Douglas, R. G., and Savin, S. M. 1978. Oxygen isotopic evidence for the depth stratification of the Tertiary and Cretaceous planktonic foraminifera. Marine Micropaleontology, 3:175196.Google Scholar
Dunbar, R. B., and Wefer, G. 1984. Stable isotope fractionation in benthic foraminifera from the Peruvian continental margin. Marine Geology, 59:215225.Google Scholar
Duplessy, J. C., Blanc, P., and , A. W. H. 1981. Oxygen-18 enrichment of planktonic forminifera due to gametogenic calcification below the euphotic zone. Science, 213:12471250.Google Scholar
Duplessy, J. C., Lalou, C., and Vinot, A. C. 1970. Differential isotopic fractionations in benthic foraminifera and paleotemperatures reassessed. Science, 138:250251.Google Scholar
Dutton, A., Lohmann, K. C., and Leckie, R. M. 2005. Insights from the Paleogene tropical Pacific: Foraminiferal stable isotope and trace elemental results from Site 1209, Shatsky Rise. Paleoceanography, 20, doi:10.1029/2004PA001098.Google Scholar
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B. 2006. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth and Planetary Science Letters, 250:633649.Google Scholar
Emiliani, C. 1954a. Depth habitats of some pelagic foraminifera as indicated by oxygen isotope ratios. American Journal of Science, 252:149158.Google Scholar
Emiliani, C. 1954b. Temperature of Pacific bottom waters and polar superficial waters during the Tertiary. Science, 119:853855.Google Scholar
Emiliani, C. 1955. Pleistocene temperatures. Journal of Geology, 63:538578.Google Scholar
Emiliani, C. 1958. Ancient temperatures. Scientific American, 198:5466.Google Scholar
Emiliani, C. 1961. The temperature decrease of surface water in high latitudes and of abyssal-hadal water in open oceanic basins during the past 75 million years. Deep Sea Research, 8:144147.Google Scholar
Emiliani, C. 1966. Isotopic paleotemperatures. Science, 154:851857.Google Scholar
Emiliani, C. 1978. The cause of the ice ages. Earth and Planetary Science Letters, 37:349352.Google Scholar
Emiliani, C. 1991. Planktic/planktonic, nektic/nektonic, benthic/benthonic. Journal of Paleontology, 65:329.Google Scholar
Emiliani, C. 1992. Pleistocene paleotemperatures. Science, 257:1462.Google Scholar
Epstein, S. R. 1997. The role of stable isotopes in geochemistries of all kinds. Anuual Review of Earth and Planetary Sciences, 25:121.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C. 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64:13151325.Google Scholar
Erez, J. 1978. Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature, 273:199202.Google Scholar
Erez, J. 2003. The source of ions for biomineraliation in foraminifera and their implications for paleoceanographic proxies. Reviews in Mineralogy and Geochemistry, 54:115149.Google Scholar
Erez, J., and Luz, B. 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochimica et Cosmochimica Acta, 47:10251031.CrossRefGoogle Scholar
Ericson, D. B., Broecker, W. S., Kulp, J. L., and Wollin, G. 1956. Late Pleistocene climates and deep-sea sediments. Science, 124:385389.Google Scholar
Ericson, D. B., and Wollin, G. 1956. Micropaleontological and isotopic determinations of Pleistocene climates. Micropaleontology, 2:257270.Google Scholar
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A. 2011. Interplay between changing climate and species' ecology drives macroevolutionary dynamics. Science, 332:349351.Google Scholar
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and , A. W. H. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature, 298:841844.Google Scholar
Faul, K. L., Ravelo, A. C., and Delaney, M. L. 2000. Reconstructions of upwelling, productivity, and photic zone depth in the eastern equatorial Pacific Ocean using planktonic foraminiferal stable isotopes and abundances. Journal of Foraminiferal Research. 30:110125.CrossRefGoogle Scholar
Faure, G., and Mensing, T. M. 2005. Isotopes: Principles and Applications, Third Edition. John Wiley and Sons, Hoboken, New Jersey, 897 p.Google Scholar
Fillipson, H. L., Bernhard, J. M., Lincoln, S. A., and Mccorckle, D. C. 2010. A culture-based calibration of benthic foraminiferal paleotemperature proxies: δ18O and Mg/Ca results. Biogeosciences, 7:13351347.Google Scholar
Friedrich, O., Norris, R. D., and Erbacher, J. 2012b. Evolution of middle to Late Cretaceous oceans—a 55 m.y. record of Earth's temperature and carbon cycle. Geology, 40:107110.Google Scholar
Friedrich, O., Schiebel, R., Wilson, P. A., Weldeab, S., Beer, C. J., Cooper, M. J., and Fiebig, J. 2012a. Influence of test size, water depth, and ecology on Mg/Ca, Sr/Ca, δ18O and δ13C in nine modern species of planktic foraminifera. Earth and Planetary Science Letters, 319–320:133145.Google Scholar
Friedman, I., and O'Neil, J. R. 1977. Compilation of stable isotope fractionation factors of geochemical interest, p. 112 In Fleischer, M. (ed.). Data of Geochemistry, U. S. Government Printing Office, Washington, DC.Google Scholar
Ganssen, G. M., Peeters, F. J. C., Metcalfe, B., Anand, P., Jung, S. J. A., Kroon, D., and Brummer, G.-J., 2011. Quantifying sea surface temperature ranges of the Arabian Sea for the past 2000 years. Climate of the Past, 7:13371349.Google Scholar
Gasperi, J. T., and Kennett, J. P. 1993. Vertical thermal structure of Miocene surface waters: western equatorial paciic DSDP Site 289. Marine Micropaleontology, 22:235254.Google Scholar
Graham, D. W. B., Corliss, B. H., Bender, M. L., and Keigwin, L. D. 1981. Carbon and oxygen isotopic disequilibria of Recent benthic foraminifera. Marine Micropaleontology, 6:483497.Google Scholar
Grossman, E. 1987. Stable isotopes in modern benthic foraminifera: a study of vital effect. Journal of Foraminiferal Research, 17:4861.Google Scholar
Grossman, E. 2010. Oxygen isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., and Smith, A. (eds.). A New Geologic Time Scale. Cambridge Univeristy Press.Google Scholar
Hambrey, M. J., Ehrmann, W. U., and Larsen, B. 1991. Cenozoic glacial record of the Prydz Bay continental shelf, East Antarctica. Proceedings of the Ocean Drilling Program, Scientific Results, 119:77132.Google Scholar
Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., and Zachos, J. C. 2010 Target atmospheric CO2: Where should humanity aim? Open Atmospheric Science Journal, 2:217231.Google Scholar
Hay, W. W., and Zakevich, E. 1999. Cesare Emiliani (1922–1995): the founder of paleoceanography. International Microbiology, 2:5254.Google Scholar
Hays, J. D., Imbrie, J., and Shackleton, N. J. 1976. Variations in earth's orbit: Pacemaker of the ice ages. Science, 194:11211132.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O.R. 1989. Modern Planktonic Foraminifera. Springer-Verlag, New York, 363 p.Google Scholar
Herbert, T. D., Peterson, L. C., Lawrence, K. T., and Liu, Z. 2010. Tropical ocean temperatures over the past 3.5 million years. Science, 328:13501354.Google Scholar
Hodell, D. A., and Vayavananda, A. 1993. Middle Miocene paleoceanography of the western equatorial Pacific and the evolution of Globorotalia (Fohsella) . Marine Micropaleontology, 22:279310.Google Scholar
Hoefs, J. 2009. Stable isotope geochemistry, 6th Edition. Springer-Verlag, Berlin, 285 p.Google Scholar
Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M., Creech, J. B., Hines, B., Crouch, E. M., Morgans, H. E. G., Crampton, J. S., Gibbs, S., Schouten, S., Pearson, P. N., and Zachos, J. C. 2012. Southwest Pacific marine temperature history from late Paleocene to middle Eocene: Revisited. Earth and Planetary Science Letters.Google Scholar
Huber, M. 2008. A hotter greenhouse? Science, 321:353354.Google Scholar
Huber, B. H., Bijma, J., and Darling, K. 1997. Cryptic speciation in the living planktonic foraminifer Globigerinella siphonifera (d'Orbigny). Paleobiology, 23:3362.Google Scholar
Huber, M., and Caballero, R. 2011. The early Eocene equable climate problem revisited. Climate of the Past Discussions, 7:241304.Google Scholar
Huber, B. H., Hodell, D. A., and Hamilton, C. P. 1995. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geology, 107:11641191.Google Scholar
Huber, B. T., Norris, R. D., and Macleod, K. G. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30:123126.Google Scholar
Huber, M., Sloan, L. C., and Shellito, C. 2003. Early Paleogene oceans and climate: fully coupled modeling approach using the NCAR CCSM, p. 2547 In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. (eds.). Causes and consequences of globally warm climates in the early Paleogene. Geological Society of America Special Paper, 369.Google Scholar
Hudson, J. D., and Anderson, T. F. 1989. Ocean temperatures and isotopic compositions through time. Transactions of the Royal Society of Edinburgh: Earth Sciences, 80:183192.Google Scholar
Hut, G. 1987. Consultants group meeting on stable isotope reference samples for geochemical and hydrological investigations. International Atomic Energy Agency, Vienna, 42 p.Google Scholar
Hutchinson, G. E. 1974. De rebus planktonicis. Limnology and Oceanography, 19:360361.Google Scholar
Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., Mcintyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. W., Shackleton, N. J., and Toggweiler, J. R. 1993. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography, 8:699735.Google Scholar
Imbrie, J., and Imbrie, K. P. 1979. Ice ages: solving the mystery. Harvard University Press, Cambridge Massachusetts, 224 p.Google Scholar
Ivanova, E. 2000. Late Quaternary monsoon history and paleoproductivity of the western Arabian Sea. , Free University, Amsterdam, 172 p.Google Scholar
Jaffrés, J. B. D., Shields, G. A., and Wallmann, K. 2007. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Science Reviews, 83:83122.Google Scholar
Jahnke, R. A., Craven, D. B., Mccorckle, D. C., and Reimers, C. E. 1997. CaCO3 dissolution in California continental margin sediments: The influence of organic matter remineralisation. Geochimica et Cosmochimica Acta, 61:35873604.Google Scholar
Kahn, M. I. 1979. Non-equilibrium oxygen and carbon isotope fractionation in tests of living planktonic foraminifera. Oceanologia Acta, 2:195208.Google Scholar
Kaiho, K., and Lamolda, M. 1999. Catastrophic extinction of planktonic foraminifera at the Cretcaeous-Tertiary boundary evidenced by stable isotopes and foraminiferal abundance at Caravaca, Spain. Geology, 27:355358.Google Scholar
Katz, M., Katz, D. R., Wright, J. D., Miller, K. G., Pak, D. K., Shackleton, N. J., and Thomas, E. 2003. Early Cenozoic benthic foraminiferal isotopes: species reliability and interspecies correction factors. Paleoceanography, 18: doi:10.1029/2002PA000798.CrossRefGoogle Scholar
Katz, M., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V., Cramer, B. S., and Rosenthal, Y. 2008. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geoscience, 1:329333.Google Scholar
Keigwin, L. D. 1980. Paleoceanographic changes in the Pacific across the Eocene—Oligocene boundary. Nature, 287:722725.CrossRefGoogle Scholar
Keigwin, L. D., and Corliss, B. H. 1986. Stable isotopes in late middle Eocene to Oligocene foraminifera. Geological Society of America, Bulletin, 97:335345.Google Scholar
Keller, G. 1985. Depth stratification of planktonic foraminifera in the Miocene ocean, p. 177195 In Kennett, J. P. (ed.). The Miocene Ocean: Paleoceanography and Biogeography. Geological Society of America, Memoir, No. 163.Google Scholar
Kelly, D. C., Bralower, T. J., Zachos, J. C., Premoli Silva, I., and Thomas, E. 1996. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology, 24:423426.Google Scholar
Kennett, J. P., and Shackleton, N. J. 1976. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. Nature, 260:513515.Google Scholar
Killingley, J. S. 1983. Effects of diagnetic recrystallization on 18O/16O values in deep sea sediments. Nature, 201:594597.Google Scholar
Killingley, J. S., Johnson, R. F., and Berger, W. H. 1981. Oxygen and carbon isotopes of individual shells of planktonic foraminifera from Ontong-Java Plateau, Equatorial Pacific. Palaeogeography, Palaeoecology, Palaeoclimatology, 33:193204.CrossRefGoogle Scholar
Kim, S.-T., and O'Neil, J. R. 1997. Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61:34613475.Google Scholar
Koutavas, A., De Menocal, P. B., Olive Col, G. C., and Lynch-Steiglitz, J. 2006. Mid-Holocene El Nino-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology, 34:993996.Google Scholar
Kozdon, R., Kelly, D. C., Kita, N. T., Fournelle, J. H., and Valley, J. W. 2011. Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene. Paleoceanography, 26:PA3206, doi:10.1029/2010PA002056.Google Scholar
Kucera, M., and Darling, K. F. 2002. Cryptic species of planktonic foraminifera: their effect on palaeoceanographic reconstructions. Philosophical Transactions of the Royal Society of London, A, 360:695718.Google Scholar
Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C., and Weinelt, M. 2005. Multiproxy approach for the reconstruction of the glacial ocean (MARGO). Quaternary Science Reviews, 24:813819.Google Scholar
Laskar, J. 1999. The limits of Earth orbital calculations for geological time-scale use. Philosophical Transactions of the Royal Society, A, 357:17351759.CrossRefGoogle Scholar
Laskar, J., Fienga, A., Gastineau, M., and Manche, H. 2011. La2010: A new orbital solution for the long term motion of the Earth. Earth and Planetary Astrophysics: arXiv:1103.1084v1.Google Scholar
Lea, D. W. 2011. Elemental and isotopic proxies of past ocean temperatures, p. 227253 In Holland, H. D., and Turekian, K. K. (eds.). Isotope geochemistry from the treatise on geochemistry. Elsevier, London.Google Scholar
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y. 2008. Cooling and ice growth across the Eocene—Oligocene transition. Geology, 36:251254.Google Scholar
Lear, C. H., Elderfield, H., and Wilson, P. A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287:269272.Google Scholar
Lear, C. H., and Rosenthal, Y. 2006. Benthic foraminiferal Li/Ca: insights into seawater carbonate saturation state. Geology, 34:985988.Google Scholar
Leduc, G., Vidal, L., Cartapanis, O., and Bard, E. 2009. Modes of eastern equatorial Pacific thermocline variability: Implications for ENSO dynamics over the last glacial period. Paleoceanography, 24, PA3202, doi:10.1029/2008PA001701.Google Scholar
Lee, J. L., Pawlowski, J., Debenay, J.-P., Whittaker, J., Banner, F., Gooday, A. J., Tendal, O., Haynes, J., and Faber, W. W. 2000. Phylum Granuloreticulosa. In Lee, J. L., Leedale, G. F., and Bradbury, P. (eds.). An Illustrated Guide to the Protozoa (2nd edn.): Society of Protozoologists, Lawrence, Ks. 2 vols., 1432 p.Google Scholar
Legrande, A. N., and Schmidt, G. A. 2006. Global gridded data of the oxygen isotopic composition of seawater. Geophysical Research Letters, 33: doi:10.1029/2006g1026011.Google Scholar
L'Homme, N., Clarke, G. K. C., and Ritz, C. 2005. Global budget of water isotopes inferred from polar ice sheets. Geophysical Research Letters, 32:L20502, doi:10.1029/2005GL023774.Google Scholar
Lisiecki, L. E., and Raymo, M. E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20:PA1003, doi:10.1029/2004PA001071.Google Scholar
Lohmann, G. P. 1995. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography, 10:445447.Google Scholar
Luthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T. F. 2008. High resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453:379382.Google Scholar
Lynch-Stieglitz, J., Curry, W. B., and Slowey, N. 1999. A geostrophic transport estimate for the Florida current from the oxygen isotopic composition of benthic foraminifera. Paleoceanography, 14:360373.Google Scholar
Mackensen, A. 2001. Oxygen and carbon stable isotope tracers of Weddell Sea water masses: New data and some paleoceanographic implications. Deep-Sea Research Part 1, Oceanographic Research Papers, 48:14011422.Google Scholar
Mcarthur, J. M., Janssen, N. M. M., Reboulet, S., Leng, M. J., Thirlwall, M. F., and Van De Schootbrugge, B. 2007. Paleotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): The Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeography, Palaeoclimatology, Palaeoecology, 248:391430.Google Scholar
Mccorkle, D. C., Bernhard, J. M., Hintz, C. J., Blanks, J. K., Chandler, G. T., and Shaw, T. J. 2008. The carbon and oxygen stable isotopic composition of cultured benthic foraminifera, p. 135154 In Austin, W. E. N., and James, R. J. (eds.). Biogeochemical Controls on Paleoceanographic Environmental Proxies, Geological Society of London, Special Publications, No. 303.Google Scholar
Mccrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18:849857.Google Scholar
Mckinney, C. R., Mccrea, J. M., Epstein, S., Allen, H. A., and Urey, H. C. 1950. Improvements in mass spectrometers for the measurement of small differences in isotopic abundance ratio. Review of Scientific Instruments, 21:724730.Google Scholar
Milankovitch, M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Königlich Serbische Akademie, Belgrade, 132 p.Google Scholar
Miller, K. G., Fairbanks, R. G., and Mountain, G. S. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2:119.Google Scholar
Milliman, J. D., Troy, P. J., Balch, W. M., Adams, A. K., Li, Y-H., and Mackenzie, F. T. 1999. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep Sea Research Part I: Oceanographic Research Papers, 46:16531699.Google Scholar
Mohtadi, M., Oppo, D. W., Lckge, A., Depol Holz, R., Steinke, S., Groeneveld, J., Hemme, N., and Hebbeln, D. 2011. Reconstructing the thermal structure of the upper ocean: Insights from modern planktonic foraminifera shells chemistry and alkenones in modern sediments of the tropical eastern Indian Ocean. Paleoceanography, 24, PA3219, doi:10.1029/2011PA002132.Google Scholar
Mulitza, S., Boltovskoy, D., Donner, B., Meggers, H., Paul, A., and Wefer, G. 2003. Temperature:δ18O relationships of planktonic foraminifera collected from surface waters. Palaeogeography, Palaeoclimatology, Palaeoecology, 202:143152.Google Scholar
Mulitza, S., Donner, B., Fischer, G., Paul, A., Pätzold, J., Rühlemann, C., and Segl, M. 1999. The South Atlantic oxygen isotope record of planktic foraminifera, p. 121142 In Wefer, G., Mulitza, S., and Ratmeyer, V. (eds.). The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems, Springer-Verlag, Berlin.Google Scholar
Mulitza, S., Dürkoop, A., Hale, W., Wefer, G., and Niebler, H. S. 1997. Planktonic foraminifera as recorders of past surface-water stratification. Geology, 25:335338.Google Scholar
NATIONAL RESEARCH COUNCIL. 2011. Scientific Ocean Drilling: Accomplishments and Challenges. National Academies Press, Washington DC, 145 p.Google Scholar
Nier, A. O. 1947. A mass spectrometer for isotopes and gas analysis. Review of Scientific Instruments, 18:398411.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1993. Evolution of depth ecology in the planktonic foraminifera lineage Globorotalia (Fohsella) . Geology, 11:975978.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1996. What is gradualism? Cryptic speciation in globorotaliid foraminifera. Paleobiology, 22:386405.Google Scholar
Norris, R. D., and Wilson, P. A. 1998. Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology, 26:823826.Google Scholar
Olausson, E. 1965. Evidence of climatic changes in North Atlantic deep-sea cores, with remarks on isotopic temperature analysis. Progress in Oceanography, 3:221252.Google Scholar
Olausson, E. 1996. The Swedish Deep-Sea Expedition with the “Albatross” 1947–1948: A Summary of Sediment Core Studies. Novum, Grafiska AB, Göteborg, 98 p.Google Scholar
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51:55475558.Google Scholar
Pälike, H., Frazier, J., and Zachos, J. C. 2006. Extended orbitally forced palaeoclimate records from the Atlantic Ceara Rise. Quaternary Science Reviews, 25:31383149.Google Scholar
Pälike, H.J., Laskar, L., and Shackleton, N. J. 2004. Constraints on astronomical parameters from the geological record of the past 25 Ma. Earth and Planetary Science Letters, 182:114.Google Scholar
Pearson, P. N. 1998. Stable isotope and the study of evolution in planktonic foraminifera. The Paleontological Society Papers, 4:138178.Google Scholar
Pearson, P. N., and Burgess, C. E. 2008. Foraminifer test preservation and diagenesis: comparison of high latitude sites, p. 5972 In Austin, W. E. N., and James, R. H. (eds.). Biogeochemical Controls on Paleoceanographic Environmental Proxies, Geological Society of London, Special Publications, No. 303.Google Scholar
Pearson, P. N., Ditchfield, P., and Shackleton, N. J. 2002. Palaeoclimatology (Communications arising): Tropical temperatures in greenhouse climates. Nature, 419:898.Google Scholar
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413:481487.Google Scholar
Pearson, P. N., and Shackleton, N. J. 1995. Neogene multispecies planktonic foraminifer stable isotope record, Site 871, Limalok guyot. Proceedings of the Ocean Drilling Program, Scientific Results, 144:2159.Google Scholar
Pearson, P. N., Shackleton, N. J., and Hall, M. A. 1993. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multispecies isotope stratigraphy, DSDP Site 523, South Atlantic. Journal of Foraminiferal Research, 23:123140.Google Scholar
Pearson, P. N., Shackleton, N. J., and Hall, M. A. 1997. Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera). Journal of the Geological Society, 154:295302.Google Scholar
Pearson, P. N., Van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J. M., and Wade, B. S. 2007. Stable warm tropical climate through the Eocene epoch. Geology, 35:211214.Google Scholar
Pearson, P. N., and Wade, B. S. 2009. Taxonomy and stable isotope paleoecology of well-preserved planktonic foraminifera from the uppermost Oligocene of Trinidad. Journal of Foraminiferal Research, 39:191217.Google Scholar
Peck, V. L., Yu, J., Kender, S., and Riesselman, C. R. 2010. Shifting ocean carbonate chemistry during the Eocene—Oligocene climate transition: implications for deep ocean Mg/Ca paleothermometry. Paleoceanography, 25, PA4219. doi:10.1029/2009PA001906.Google Scholar
Pisias, N. G., Martinson, D. G., Moore, T. C., Shackleton, N. J., Prell, W., Hays, J., and Boden, G. 1984. High resolution stratigraphic correlation of benthic oxygen isotopes spanning the last 300,000 years. Marine Geology, 56:119136.Google Scholar
Poore, R.Z., and Matthews, R. K. 1984. Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: implications for Oligocene sea surface temperatures and global ice volumes. Marine Micropaleontology, 9:111134.Google Scholar
Prokoph, A., Shields, G. A., and Veizer, J. 2008. Compilation and time-series analysis of marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Science Reviews, 87:113133.Google Scholar
Purton, L., and Brasier, M. D. 1999. Giant protist Nummulites and its Eocene environment: Life span and habitat insights from δ18O and δ13C data from Nummulites and Venericardia, Hampshire basin, UK. Geology, 27:711714.Google Scholar
Pusz, A. F., Thunell, R. C., and Miller, K. G. 2011. Deep water temperature, carbonate ion, and ice volume changes across the Eocene–Oligocene climate transition. Paleoceanography, 26, PA2205. doi:10.1029/2010PA001950.Google Scholar
Rasmussen, T. L., and Thomsen, E. 2009. Stable isotope signals from brines in the Barents Sea: implications for brine formation during the last glaciation. Geology, 37:903906.Google Scholar
Rathmann, S., and Kuhnert, H. 2008. Carbonate ion effect on Mg/Ca, Sr/Ca and stable isotopes on the benthic foraminifera Oridorsalis umbonatus off Namibia. Marine Micropaleontology, 66:120133.Google Scholar
Raymo, M. E., Lisiecki, L., and Nisancioglu, K. 2006. Plio—Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science, 313:492495.Google Scholar
Reichart, G.-J., Jorissen, F., Anschutz, P., and Mason, P. R. D. 2003. Single foraminiferal test chemistry records the marine environment. Geology, 31:355358.Google Scholar
Rink, S., Kühl, M., Bijma, J., and Spero, H. 1998. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa . Marine Biology, 131:583595.Google Scholar
Roberts, C. D., Legrande, A. N., and Tripati, A. K. 2011. Sensitivity of seawater oxygen isotopes to climatic and tectonic boundary conditions in an early Paleogene simulation with GISS Model E-R. Paleoceanography 26:PA4203, doi:10.1029/201pa002025.Google Scholar
Rodhe, W. 1974. Plankton, planktis, planktonic. Limnology and Oceanography, 19:360.Google Scholar
Rohling, E. J., and Cooke, S. 1999. Stable oxygen and carbon isotopes in foraminiferal carbonate shells, p. 239258 In Sen Gupta, B. (ed.). Modern Foraminifera. Kluwer, Dordrecht.Google Scholar
Rollion-Bard, C., Erez, J., and Zilberman, T. 2008. Intra-shell oxygen isotope ratios in the benthic foraminifera genus Amphistegina and the influence of seawater carbonate chemistry and temperature on this ratio. Geochimica et Cosmochimica Acta, 72:60066014.Google Scholar
Rosman, J. R., and Taylor, P. D. 1998. Isotopic compositions of the elements (technical report): commission on atomic weights and isotopic abundances. Pure and Applied Chemistry, 70:217235.Google Scholar
Sautter, L. R., and Thunell, R. C. 1991. Seasonal variability in δ18O and δ13C of planktonic foraminifera from an upwelling environment: sediment trap results from the San Pedro Basin, Southern California Bight. Paleoceanography, 6:307334.Google Scholar
Savin, S. M. 1977. The history of Earth's surface temperature during the past 100 million years. Annual Reviews of Earth and Planetary Science, 5:319355.Google Scholar
Savin, S. M., Abel, L., Barrera, E., Hodell, D. A., Keller, G., Kennett, J. P., Killingley, J., Murphy, M., and Vincent, E. 1985. The evolution of Miocene surface and near-surface temperatures, oxygen isotopic evidence, p. 4982 In Kennett, J. P. (ed.). The Miocene Ocean: Paleoceanography and Biogeography. Geological Society of America, Memoir, No. 163.Google Scholar
Savin, S. M., Douglas, R. G., and Stehli, F. G. 1975. Tertiary marine paleotemperatures. Geological Society of America, Bulletin, 86:14991510.Google Scholar
Schiebel, R. 2002. Planktonic foraminiferal sedimentation and the marine calcite budget. Global Biogeochemical Cycles, 11:125133.Google Scholar
Schiffelbein, P., and Hills, S. 1984. Direct assessment of stable isotope variability in planktonic foraminifera populations. Palaeogeography, Palaeoclimatology, Palaeoecology, 48:197213.Google Scholar
Schmidt, G. A. 1999. Forward modeling of carbonate proxy data from planktonic foraminifera using oxygen isotope tracers in a global ocean model. Paleoceanography, 14:482497.Google Scholar
Schmidt, G. A., Bigg, G. R., and Rohling, E. J. 1999. Global seawater Oxygen-18 database—v1.21:http://data.giss.nasa.gov/o18data/.Google Scholar
Schneider, C. E., and Kennett, J. P. 1996. Isotopic evidence for interspecies habitat differences during evolution of the Neogene planktonic foraminferal clade Globoconella . Paleobiology, 22:282303.Google Scholar
Schrag, D. P. 1999. Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures. Chemical Geology, 1999:215224.Google Scholar
Schrag, D. P., Atkins, J. F., Mcintyre, K., Alexander, J. L., Hodell, D. A., Charles, C. D., and Mcmanus, J. F. 2002. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quaternary Science Reviews, 21:331342.Google Scholar
Self-Trail, J. M., and Seefelt, E. L. 2004. Rapid dissolution of calcareous nannofossils from freshly cored sediments, USA. Journal of Nannoplankton Research, 26:94.Google Scholar
Sexton, P. F., Wilson, P. A., and Pearson, P. N. 2006. Microstructural and geochemical perspectives on planktic foraminiferal preservation: ‘Glassy’ versus ‘Frosty’. Geochemistry, Geophysics, Geosystems, 7:Q12P19, doi:10.1029/2006GC001291.Google Scholar
Shackleton, N. J. 1967. Oxygen isotope analyses and Pleistocene temperatures reassessed. Nature, 215:1517.Google Scholar
Shackleton, N. J. 1974. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina , p. 203209 In Isotopic changes in the ocean during the last glacial. Cent. Nat. Rech. Sci. Colloq. Int., No. 219.Google Scholar
Shackleton, N. J. 1986. Paleogene stable isotope events. Palaeogeography, Palaeoclimatology, Palaeoecology, 57:91102.Google Scholar
Shackleton, N. J. 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289:18971902.Google Scholar
Shackleton, N., and Boersma, A. 1981. The climate of the Eocene ocean. Journal of the Geological Society of London, 138:153157.Google Scholar
Shackleton, N. J., Corfield, R. M., and Hall, M. A. 1985. Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. Journal of Foraminiferal Research, 15:321336.Google Scholar
Shackleton, N. J., Crowhurst, S. J., Weedon, G. P., and Laskar, J. 1999. Astronomical calibration of Oligocene–Miocene time. Philosophical Transactions of the Royal Society of London, Series A, 357:19071929.Google Scholar
Shackleton, N. J., and Kennett, J. P. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Initial Reports of the Deep Sea Drilling Project, 29:743755.Google Scholar
Shackleton, N. J., and Opdyke, N. D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research, 3:3955.Google Scholar
Shackleton, N. J., Wiseman, J. D. H., and Buckley, H. A. 1973. Non-equilibrium isotopic fractionation between seawater and planktonic foraminiferal tests. Nature, 242:177179.Google Scholar
Shieh, Y.-T., You, C.-F., Shea, K.-S., and Hong, C.-S. 2002. Identification of artifacts in foraminiferal tests using carbon and oxygen isotopes: Journal of Asian Earth Sciences, 21:15.Google Scholar
Spero, H. J. 1992. Do planktic foraminifera accurately record shifts in the carbon isotopic composition of sea water SGCO2? Marine Micropaleontology, 19:275285.Google Scholar
Spero, H. J. 1998. Life history and stable isotope geochemistry of planktonic foraminifera. The Paleontological Society Papers, 4:736.Google Scholar
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390:497500.Google Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer. results from laboratory experiments. Marine Micropaleontology, 22:221234.Google Scholar
Spero, H. J., Mielke, K. M., Kalve, E. M., Lea, D. W., and Pak, D. K. 2003. Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography, 18, doi:10.1029/2002PA000814.Google Scholar
Stewart, D. R. M., Pearson, P. N., Ditchfield, P. W., and Singano, J. M. 2004. Miocene ocean temperatures: evidence from three exceptionally preserved foraminiferal assemblages from Tanzania. Journal of African Earth Sciences, 40, 173189.Google Scholar
Stott, L. D., and Tang, C. M. 1996. Reassessment of tropical sea surface δ18O temperatures. Paleoceanography, 11:3756.Google Scholar
Tang, C. M., and Stott, L. D. 1993. Seasonal salinity changes during Mediterranean sapropel deposition 9,000 years B.P.: Evidence from isotopic analyses of individual planktonic foraminifera. Paleoceanography, 8:473494.Google Scholar
Tindall, J., Flecker, R., Valdes, P., Schmidt, D. N., Markwick, P., and Harris, J. 2010. Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean-atmosphere GCM: Implications for reconstructing early Eocene climate. Earth and Planetary Science Letters, 292:265273.Google Scholar
Uchikawa, J., and Zeebe, R. E. 2010. Examining possible effects of seawater pH decline on foraminiferal stable isotopes during the Paleocene–Eocene thermal maximum. Paleoceanography, 25:PA2216, doi:10.1029/2009PA001864.Google Scholar
Ujiié, Y. and Lipps, J. H. 2009. Cryptic diversity in planktic foraminifera in the northwest Pacific Ocean. Journal of Foraminiferal Research, 39:145154.Google Scholar
Urey, H. C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society of London, 1947:562581.Google Scholar
Urey, H. C. 1948. Oxygen isotopes in nature and in the laboratory. Science, 108:489496.Google Scholar
Urey, H. C., Lowenstham, H., Epstein, S., and Mckinney, C. R. 1951. Measurement of paleotemperatures of the Upper Cretaceous of England, Denmark and the south-eastern United States. Bulletin of the Geological Society of America, 62:399426.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161:5988.Google Scholar
Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, G., Carden, G.A.F., Jasper, T., Korte, C., Strauss, H., Azmy, K., and Ala, D. 1997. Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 132:159172.Google Scholar
Veizer, J., Godderis, Y., and Francois, L. M. 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408:698701.Google Scholar
Vidal, L., Labeyrie, L., and Van Weering, T. C. E. 1998. Benthic δ18O records in the North Atlantic over the last glacial period (60–10 k.yr.): Evidence for brine formation. Paleoceanography, 13:245251.Google Scholar
Vincent, E., Killingley, J. S., and Berger, W. H. 1985. Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean. p. 103130 In Kennett, J. P. (ed.). The Miocene Ocean: Paleoceanography and Biogeography. Geological Society of America, Memoir, No. 163.Google Scholar
Wade, B. S., Houben, J. P., Quaijtaal, W., Schouten, S., Rosenthal, Y., Miller, K. G., Katz, M. E., Wright, J. D., and Brinkhuis, H. 2012. Multiproxy record of abrupt sea-surface cooling across the Eocene—Oligocene transition in the Gulf of Mexico. Geology, 40:159162.Google Scholar
Wade, B. S., and Pälike, H. 2004. Oligocene climate dynamics. Paleoceanography, 19:PA4019, doi:10.1029/2004PA001042.Google Scholar
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H. 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical timescale. Earth Science Reviews, 104:111142.Google Scholar
Waelbroeck, C., Mulitza, S., Spero, H., Dokken, T., Kiefer, T., and Cortijo, E. 2005. A global compilation of late Holocene planktonic foraminiferal δ18O: relationship between surface water temperature and δ18O. Quaternary Science Reviews, 24:853868.Google Scholar
Wallmann, K. 2001. The geological water cycle and the evolution of marine δ18O values. Geochimica et Cosmochimica Acta, 65:24692485.Google Scholar
Wang, L. 2000. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: Implications for monsoon climate change during the last glacial cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 161:381394.Google Scholar
Wefer, G., and Berger, W. H. 1991. Isotope paleontology: Growth and composition of extant calcareous species. Marine Geology, 100:207248.Google Scholar
Westerhold, T., Bickert, T., and Rohl, U. 1995. Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constraints on Miocene climate variability and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 217:205222.Google Scholar
Williams, D. F., Be, A. W. H., and Fairbanks, R. G. 1981. Seasonal stable isotope variations in living planktonic foraminifera from Bermuda plankton tows. Palaeogeography, Palaeoclimatology, Palaeoecology, 33:71102.Google Scholar
Williams, M., Haywood, A. M., Taylor, S. P., Valdes, P. J., Sellwood, B. W., and Hillenbrand, C.-D. 2004. Evaluating the efficacy of planktonic forminifer calcite δ18O data for sea surface temperature reconstruction for the Late Miocene. Geobios, 38:843863.Google Scholar
Williams, M., Haywood, A. M., Vautravers, M., Sellwood, B. W., Hillbrand, C.-D., Wilkinson, I. P. A., and Miller, C. G. 2007. Relative effect of taphonomy on calcification temperature estimates from fossil planktonic foraminifera. Geobios, 40:861874.Google Scholar
Wilson, D. S., Jamieson, S. S. R., Barrett, P. J., Leitchenkov, G., Göhl, K., and Larter, R. D. 2012. Antarctic topography at the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 335–336:2434.Google Scholar
Wilson, P. A., and Norris, R. D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412:425429.Google Scholar
Wilson, P. A., Norris, R. D., and Cooper, M. J. 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turnoian tropics on Demerara Rise. Geology, 30:607610.Google Scholar
Wilson, P. A., and Opdyke, B. N. 1996. Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of meta-stable carbonate. Geology, 24:555558.Google Scholar
Wilson-Finelli, A., Chandler, G. T., and Spero, H. J. 1998. Stable isotope behavior in paleoceanographically important benthic foraminifera; results from microcosm culture experiments. Journal of Foraminiferal Research, 28:312320.Google Scholar
Winterer, E. L. 2000. Scientific ocean drilling, from AMSOC to COMPOST, p. 117127 In 50 years of Ocean Discovery, National Academy Press, Washington, DC.Google Scholar
Zachos, J. C., Arthur, M. A., Bralower, T. J., and Spero, H. J. 2002. Palaeoclimatology (Communication arising): tropical temperatures in greenhouse episodes. Nature, 419:897898.Google Scholar
Zachos, J. C., Bohaty, S. M., John, C. M., Mccarren, H., Kelly, D. C., and Nielsen, T. 2007. The Palaeocene—Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records. Philosophical Transactions of the Royal Society A, 365:18291842.Google Scholar
Zachos, J. C., Breza, J. R., and Wise, S. W. 1992. Early Oligocene ice sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology, 20:569573.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature, 451:279283.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:683693.Google Scholar
Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. J., and Bralower, T. J. 2006. Extreme warming of mid-latitude coastal ocean during the Paleocene–Eocene Thermal maximum: Inferences from TEX86 and isotopic data. Geology, 34:737740.Google Scholar
Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography, 9:353387.Google Scholar
Zeebe, R. E. 1999. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochemica et Cosmochimica Acta, 63:20012007.Google Scholar
Zeebe, R. E. 2001. Seawater pH and isotopic paleotemperatures of Cretaceous oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 170:4957.Google Scholar
Zeebe, R. E. 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annual Reviews of Earth and Planetary Sciences, 40:141165.Google Scholar
Zeebe, R. E., Bijma, J., Hönisch, B., Sanyal, A., Spero, H. J., and Wolf-Gladrow, D. A. 2008. Vital effects and beyond: a modelling perspective on developing paleoceanographical proxy relationships in foraminifera, p. 4558 In Austin, W. E. N., and James, R. H. (eds.). Biogeochemical Controls on Paleoceanographic Proxies. Geological Society of London, Special Publications, No. 303.Google Scholar
Ziveri, P., Thomas, S., Probert, I., Geisen, M., and Langer, G. 2012. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms. Biogeosciences, 9:10251032.Google Scholar