Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-09-15T10:31:31.062Z Has data issue: false hasContentIssue false

Supersonic Fe beam source for chromatic aberration-free laser focusing ofatoms

Published online by Cambridge University Press:  06 June 2002

R. C. M. Bosch
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB  Eindhoven, The Netherlands
H. C. W. Beijerinck
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB  Eindhoven, The Netherlands
P. van der Straten
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB  Eindhoven, The Netherlands
K. A. H. van Leeuwen*
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB  Eindhoven, The Netherlands
Get access

Abstract

A monochromatic Fe beam is generated by heated supersonicexpansion of argon seeded with Fe vapor. At a nozzle temperatureof 1930 K and 800 torr argon inlet pressure the Fe beam has anaxial velocity spread of 8% and intensity of 3 × 1015s−1 sr−1, corresponding to a deposition rate of 10 nm/h at 150 mm from the nozzle. The two-chamber alumina crucibles arechemically stable for liquid Fe. With 400 mm3 Fe we haveoperated for more than 200 hours without reloading. The powerconsumption at 1930 K is 750 W. Temperature stability at constantpower (without feedback) is better than 30 K. The source isintended for deposition of nanostructures by laser focusing of theFe beam. The small axial velocity spread virtually eliminates theincrease in focal spot size due to chromatic aberration.

Keywords

Information

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

S.J.H. Petra, L. Feenstra, W. Vassen, W. Hogervorst, Int. Quantum Electron. Conference CLEO/Europe-IQEC 2000, Nice, France
Brezger, B., Schulze, Th., Drodofsky, U., Stuhler, J., Nowak, S., Pfau, T., Mlynek, J., J. Vac. Sci. Technol. B 15, 2905 (1997) CrossRef
Engels, P., Salewski, S., Levsen, H., Sengstock, K., Ertmer, W., Appl. Phys. B 69, 407 (1999) CrossRef
Berggren, K.K., Bard, A., Wilbur, J.L., Gillaspy, J.D., Helg, A.G., McClelland, J.J., Rolston, S.L., Phillips, W.D., Prentiss, M., Whitesides, G.M., Science 269, 1255 (1995) CrossRef
Lison, F., Adams, H.J., Schuh, P., Haubrich, D., Meschede, D., Appl. Phys. B 65, 419 (1997) CrossRef
Timp, G., Behringer, R.E., Tennant, D.M., Cunningham, J.E., Phys. Rev. Lett. 69, 1636 (1992) CrossRef
McClelland, J.J., Scholten, R.E., Palm, E.C., Celotta, R.J., Science 262, 877 (1993) CrossRef
McGowan, R.W., Giltner, D., Siu Au Lee, Opt. Lett. 20, 2535 (1995) CrossRef
Himpsel, F.J., Ortega, J.E., Mankey, G.J., Willis, R.F., Adv. Phys. 47, 511 (1998) CrossRef
Hoogerland, M.D., Driessen, J.P.J., Vredenbregt, E.J.D., Megens, H.J.L., Schuwer, M.P., Beijerinck, H.C.W., van Leeuwen, K.A.H., Appl. Phys. B 62, 323 (1996) CrossRef
Beijerinck, H.C.W., Verster, N.F., Physica C 111, 327 (1981) CrossRef
R.C.M. Bosch, Vacuum Solutions 17, March/April 2000
Hagena, O.F., Z. Phys. D 20, 425 (1991) CrossRef
J.B. Anderson, Molecular beams and low density gas dynamics, edited by P.P. Wegener (Dekker, New York, 1974), Vol. 1
Campargue, R., Rev. Sci. Instrum. 35, 111 (1964) CrossRef
Beijerinck, H.C.W., van Gerwen, R.J.F., Kerstel, E.R.T., Martens, J.F.M., van Vliembergen, E.J.M., Smits, M.R.Th., Kaashoek, G.H., Chem. Phys. 96, 153 (1985) CrossRef
D.R. Miller, R. Andres, Rarefied Gas Dynamics, Proc. VI Symp. (Academic Press, New York, 1969), Vol. 2, p. 1385
Hagena, O.F., Knop, G., Fromknecht, R., Linker, G., J. Vac. Sci. Technol. A 12, 282 (1994) CrossRef