Hostname: page-component-cb9f654ff-d5ftd Total loading time: 0 Render date: 2025-08-28T10:28:29.807Z Has data issue: false hasContentIssue false

An inverse technique to deduce the elasticity of a large artery

Published online by Cambridge University Press:  15 February 2000

P.-Y. Lagrée*
Affiliation:
Laboratoire de Modélisation en Mécanique, Université Paris VI, UMR 7607, B.P. 162, 4 place Jussieu, 75005 Paris, France
Get access

Abstract

Our purpose is to build an inverse method which best fits a model of artery flow and experimentalmeasurements (we assume that we are able to measure the displacement of theartery as a function of time at three stations).Having no clinical data, we simulate these measurements with thenumerical computations from a "boundary layer" code.First, we revisit the system of Ling and Atabekof boundary layer type for the transmission of a pressure pulsein thearterial system for the case of an elastic wall (but we solve it without any simplification in the $u\partial u/\partial x$ term). Then, using a methodanalogous to the well known Von Kármán-Pohlhausen method fromaeronautics but transposed here for a pulsatile flow, we build a system ofthree coupled non-linear partial differential equations depending only ontime and axial co-ordinate. This system governs the dynamics of internalartery radius, centre velocity and a quantity related to the presence ofviscous effects. These two methods give nearly the same numerical results.Second, we construct an inverse method: the aim is to findfor the simpleintegral model, the physical parameters to put in the "boundary layer" code(simulating clinical data). This is done by varying in the integralmodel the viscosity and elasticity in order to fit best with the data. Toachieve this in a rational way, we have to minimise a cost function, whichinvolves the computation of the adjoint system of the integral method. The good setof parameters (i.e. viscosity, and two coefficients of a wall law)is effectively found again. It opens the perspective for application in realclinical cases of this new non-invasive method for evaluating the viscosityof the flow and elasticity of the wall.

Keywords

Information

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

E. Barros, "Identification de paramètres dans les équations de Saint Venant'', Thèse Univ. Paris VI, 1996.
Belardinelli, E., Cavalcanti, S., J. Biomech. 25, 1337 (1992). CrossRef
G. Chavent, "Identification of distributed parameter systems'', Proceedings of the 5th IFAC Symposium on Identification and System Parameters Estimations, 1979, pp. 85-97.
Cowley, S.J., J.F.M. 116, 459 (1982). CrossRef
Cowley, S.J., Hocking, L.M., Tutty, O.R., Phys. Fluids 28, 314 (1985). CrossRef
Downing, J.M., Ku, D.N., J. Biomech. Eng. 119, 317 (1997). CrossRef
Errate, D., Esteban, M.J., Maday, Y., C. R. Acad. Sci. Paris Ser. I 318, 275 (1994).
Flaud, P., Quemada, D., Rev. Phys. Appl. 15, 749 (1980). CrossRef
Fullana, J.M., Le Gal, P., Rossi, M., Zaleski, S., Physica D 102, 37 (1997). CrossRef
Kuiken, G.D.C., J.F.M. 141, 289 (1984). CrossRef
C. Hirsch, Numerical computation of internal and external flows (John Wiley & Sons, 1990) Vol. 2.
Horsten, J.B.A.M., Van Steenhoven, A.A., Van Dongen, M.E.H., J. Biomech. 22, 477 (1989). CrossRef
R.T. Jones, Blood Flow, Annual Review of Fluid Mechanics, 1969, pp. 223-243.
J.C. Le Balleur, Viscid- inviscid coupling calculations for 2 and 3D flows, VKI lecture series 1982-02, 1982.
M.J. Lighthill, Mathematical Biofluiddynamics, SIAM Philadelphia, 1975.
Ling, S.C., Atabek, H.B., J.F.M. 55, 493 (1972). CrossRef
Ma, X., Lee, G.C., Wu, S.G., J. Biomech. Eng. Trans. ASME 114, 490 (1992). CrossRef
Mederic, P., Gaudu, R., Mauss, J., Zagzoule, M., Innov. Tech. Biol. Med. 2, 234 (1991).
Moodie, T.B., Barclay, D.W., Greenwald, S.E., Newman, D.L., Acta Mech. 54, 107 (1984). CrossRef
Ohayon, J., Chadwick, R.S., Biophys. J. 54, 1077 (1988). CrossRef
Paquerot, J.-F., Remoissenet, M., Phys. Lett. A 194, 77 (1994). CrossRef
Pedrizzetti, G., J.F.M. 310, 89 (1996). CrossRef
T.J. Pedley, The Fluid Mechanics of Large Blood Vessel (Cambridge University press, 1980).
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C (Cambridge University Press, 1995).
Pythoud, F., Stergiopulos, N., Meister, J.-J., J. Biomech. Eng. 118, 295 (1996). CrossRef
Reuderink, P.J., Van de Vosse, F.N., Van Steenhoven, A.A., Van Dongen, M.E.H., Janssen, J.D., Int. J. Numer. Methods Fluids 16, 597 (1993). CrossRef
Rogova, I., Flaud, P., Arch. Physiol. Biochem. 103, C47 (1995). CrossRef
Rudinger, G., Trans. ASME 5, 34 (1970). CrossRef
H. Schlichting, Boundary layer theory (Mc Graw Hill, 1987).
Seymour, B.R., Int. J. Engng. Sci. 13, 579 (1975). CrossRef
A. Tarantola, Inverse problem theory (Elsevier, 1987).
Tardy, Y., Meister, J.J., Perret, F., Brunner, H.R., Arditi, M., Clin. Phys. Meas. 12, 39 (1991). CrossRef
Teppaz, P., Herbin, R., Ohayon, J., Arch. Physiol. Biochem. 103, C76 (1995). CrossRef
Van Dommeln, L., Shen, S.F., J. Comp. Phys. 38, 125 (1980). CrossRef
Vesier, C.C., Yoganathan, A.P., J. Comp. Phys. 99, 271 (1992). CrossRef
Wang, D.M., Tarbell, J.M., J.F.M. 239, 341 (1992). CrossRef
Wang, D.M., Tarbell, J.M., J. Bio. Mec. 117, 127 (1995).
Womersley, J.R., Philos. Mag. 46, 199 (1955). CrossRef
Wu, S.G., Lee, G.C., Sci. China 32, 711 (1989); 106, 376 (1989).
Wu, S.G., Lee, G.C., Tseng, N.T., J. Biomech. Eng. Trans. ASME 106, 376 (1984).
Yama, J.R., Mederic, P., Zagzoule, M., Arch. Physiol. Biochem. 103, C164 (1995).
Yomosa, S., J. Phys. Soc. Jap. 56, 506 (1987). CrossRef
Zagzoule, M., Khalid-Naciri, J., Mauss, J., J. Biomech. 24, 435 (1991). CrossRef
Zagzoule, M., Marc-Vergnes, J.-P., J. Biomech. 19, 1015 (1986). CrossRef