Hostname: page-component-857557d7f7-zv5th Total loading time: 0 Render date: 2025-12-01T22:43:31.634Z Has data issue: false hasContentIssue false

A.C. conduction in glassy Se70Te30−x Sbx alloys: observation of Meyer-Neldel rule

Published online by Cambridge University Press:  24 January 2007

N. Mehta
Affiliation:
Physics Department, Pranveer Singh Institute of Technology, Kanpur, India
S. Kumar
Affiliation:
Physics Department, Christ Church College, Kanpur, India
A. Kumar*
Affiliation:
Physics Department, Harcourt Butler Technological Institute, Kanpur, India
Get access

Abstract

Temperature and frequency dependence of a.c. conductivity have been studied in glassy Se70Te30−x Sbx (2 ≤ x ≤ 10). An agreement between experimental and theoretical results suggests that the a.c. conductivity behaviour of Se-Te-Sb system can be successfully explained by correlated barrier hopping (CBH) model. The observation of Meyer-Neldel rule in case of a.c. conductivity at high temperatures is also reported for glassy Se70Te30−x Sbx (2 ≤ x ≤ 10) alloys.

Keywords

Information

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Elliot, S.R., Philos. Mag. B 36, 1291 (1977) 10.1080/14786437708238517CrossRefGoogle Scholar
Shimakawa, K., Philos. Mag. B 46, 123 (1982) 10.1080/13642818208246429CrossRefGoogle Scholar
Arora, R., Kumar, A., Phys. Status Solidi A 125, 273 (1991) CrossRefGoogle Scholar
Dwivedi, S.K., Dixit, M., Kumar, A., J. Mater. Sci. Lett. 17, 233 (1998) 10.1023/A:1006544630424CrossRefGoogle Scholar
Yelon, A., Movaghar, B., Appl. Phys. Lett. 71, 3549 (1997) 10.1063/1.120387CrossRefGoogle Scholar
Shimakawa, K., Abdel-Wahab, F., Appl. Phys. Lett. 70, 652 (1997) 10.1063/1.118323CrossRefGoogle Scholar
Abd-El Mongy, A., Egypt. J. Sol. 24, 1 (2001) Google Scholar
El-Kady, Y.L.A., Physica B 305, 259 (2001) 10.1016/S0921-4526(01)00585-3CrossRefGoogle Scholar
Roberts, G. G., J. Phys. C 4, 3167 (1971) 10.1088/0022-3719/4/18/021CrossRefGoogle Scholar
Kumar, D., Kumar, S., Jpn J. Appl. Phys. 43, 901 (2004) 10.1143/JJAP.43.901CrossRefGoogle Scholar
Kumar, D., Kumar, S., J. Optoelectron. Adv. Mater. 6, 777 (2004) Google Scholar
Mehta, N., Kumar, D., Kumar, A., J. Phys. Studies 9, 238 (2005) 10.30970/jps.09.238CrossRefGoogle Scholar
Kushwaha, V.S., Mehta, N., Kushwaha, N., Kumar, A., J. Optoelectron. Adv. Mater. 7, 2035 (2005) Google Scholar
Abdel-Wahab, F., J. Appl. Phys. 91, 265 (2002) CrossRefGoogle Scholar
Abdel-Wahab, F., Turk. J. Phys. 28, 133 (2004) Google Scholar
Mann, A.S., Goyal, D.R., Kumar, A., Rev. Phys. Appl. 24, 1071 (1989) 10.1051/rphysap:0198900240120107100CrossRefGoogle Scholar
Singh, M., Bhatia, K.L., Kishore, N., Singh, P., Kundu, R.S., J. Non-Cryst. Solids 180, 251 (1995) CrossRefGoogle Scholar
Elliott, S.R., Philos. Mag. B 40, 507 (1979) 10.1080/01418637908226775CrossRefGoogle Scholar
Dyre, J.C., J. Appl. Phys. 64, 2456 (1988) 10.1063/1.341681CrossRefGoogle Scholar
Hvam, J.M., Brodsky, M.H., Phys. Rev. Lett. 46, 371 (1981) CrossRefGoogle Scholar
Dyre, J.C., J. Phys. C 19, 5655 (1986) 10.1088/0022-3719/19/28/016CrossRefGoogle Scholar
Dyre, J.C., J. Phys. C 21, 2431 (1988) 10.1088/0022-3719/21/12/026CrossRefGoogle Scholar
Macdonald, J.R., J. Appl. Phys. 58, 1955 (1985) 10.1063/1.336003CrossRefGoogle Scholar