Hostname: page-component-cb9f654ff-fg9bn Total loading time: 0 Render date: 2025-08-29T15:25:45.505Z Has data issue: false hasContentIssue false

Redistribution of Ni implanted into InP

Published online by Cambridge University Press:  15 February 2001

T. K. Chini*
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064, India
S. K. Ghose
Affiliation:
Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
B. Rout
Affiliation:
Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
B. N. Dev
Affiliation:
Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
M. Tanemura
Affiliation:
Nagoya Institute of Technology, Graduate School of Engineering, Gokiso-cho, Showa-ku, Nagoya 466, Japan
F. Okuyama
Affiliation:
Nagoya Institute of Technology, Graduate School of Engineering, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Get access

Abstract

The redistribution of Ni in InP is studied by annealing samples ofInP implanted with 0.9 MeV Ni at 60o angle of ion incidencewith respect to target surface normal as a function of dose (8.5×1012−4.5×1015 cm−2). Ni profiles are measured by secondaryion mass spectrometry (SIMS) and implantation induced damage by Rutherford backscattering spectrometry in channeling (RBS/C) condition. The highest dose sampleis characterised by remarkable Ni accumulation near the surface (at $0.3R_{\rm np}$ ) that has not been observed earlier along with two otherdistinct accumulation zones at R np+ $\Delta R_{\rm np}$ and $2.2R_{\rm np}$ after annealing at 650 °C for 30 min. Here, R np is the normalcomponent of the projected range for oblique angle bombardment.

Keywords

Information

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Carnera, A., Gasparotto, A., Tromby, M., Caldironi, M., Pellegrino, S., Vidimari, F., Bocchi, C., Frigeri, C., J. Appl. Phys. 76, 5085 (1994). CrossRef
Ullrich, H., Knecht, A., Bimberg, D., Kraütle, H., Schlaak, W., J. Appl. Phys. 72, 3514 (1992). CrossRef
Gasparotto, A., Carnera, A., Frigeri, C., Priolo, F., Fraboni, B., Camporese, A., Rosetto, G., J. Appl. Phys. 85, 753 (1999). CrossRef
Ullrich, H., Knecht, A., Bimberg, D., Kraütle, H., Schlaak, W., J. Appl. Phys. 70, 2604 (1991). CrossRef
Carnera, A., Gasparotto, A., Scordilli, A., Priolo, F., Frigeri, C., Rosetto, G., Nucl. Instrum. Methods Phys. Res. B 96, 307 (1995). CrossRef
Vellanki, J., Nadella, R.K., Rao, M.V., Holland, O.W., Simons, D.S., Chi, P.H., J. Appl. Phys. 73, 1126 (1993). CrossRef
Schwarz, S.A., Schwartz, B., Sheng, T.T., Singh, S., Tell, B., J. Appl. Phys. 58, 1698 (1985). CrossRef
Gauneau, M., L'Haridon, H., Rupert, A., Salvi, M., J. Appl. Phys. 53, 6823 (1982). CrossRef
Cheng, J., Forest, S.R., Tell, B., Wilt, D., Schwartz, B., Wright, P.D., J. Appl. Phys. 58, 1780 (1985). CrossRef
Korona, K., Karpinska, K., Babinski, A., Hennel, A.M., Acta Phys. Pol. A 77, 71 (1990).
Clerjaud, B., J. Phys. C Solid State Phys. 18, 3615 (1985). CrossRef
Chini, T.K., Bhattacharyya, S.R., Basu, D., Rout, B., Ghose, S., Sundaravel, B., Dev, B.N., Okuyama, F., Kaneko, M., J. Mater. Sci. Lett. 17, 1117 (1998). CrossRef
Robinson, H.G., Deal, M.D., Stevenson, D.A., Appl. Phys. Lett. 56, 554 (1990). CrossRef
Christel, L.A., Gibbons, J.F., J. Appl. Phys. 52, 5050 (1981). CrossRef
Available from Prof. J.F. Ziegler, IBM, New-York.
Ghose, S.K., Kuri, G., Das, A.K., Rout, B., Mahapatra, D.P., Dev, B.N., Nucl. Instrum. Method Phys. Res. B 156, 125 (1999). CrossRef
Anderson-Södeberg, M., J. Alloys Compounds 194, 67 (1993). CrossRef
Zheng, P., Ruault, M.O., Denanot, M.F., Descouts, B., Krauzg, P., J. Appl. Phys. 69, 197 (1991). CrossRef