Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T06:32:24.206Z Has data issue: false hasContentIssue false

Time variations of water masers

Published online by Cambridge University Press:  03 August 2017

Tarja Liljeström
Affiliation:
Helsinki University of Technology, Metsähovi Radio Observatory, Otakaari 5.A, FIN-02150 Espoo, Finland
Carl R. Gwinn
Affiliation:
University of California, Physics Department, Broida Hall Santa Barbara, CA 93106, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The strong water maser line at 22 GHz is an excellent tool for studying shocked and turbulent interstellar regions, especially, if simultaneous single-dish and VLBI data are available. After a brief review of 22 GHz time variation studies, we focus on effects caused by magnetic field pressure on observed properties of water masers. We use the powerful and rich maser cluster W49N as an example. Furthermore, we point out the connection between postshock wave damping and observed excess in single-dish flux density and line width.

Type
Part 1. Star Formation
Copyright
Copyright © Astronomical Society of the Pacific 2002 

References

Abraham, Z., & Vilas Boas, J. W. S. 1994, A&A, 220, 956 Google Scholar
Alfven, H. 1943, Ark. Mat. Astron. Fys., 29B, 2 Google Scholar
Berulis, I., Lekht, E., Mendoza-Torres, E. 1996, Aston. Reports, 40, 329 Google Scholar
Chandrasekhar, S., & Fermi, E. 1953, ApJ, 118, 113 Google Scholar
Elitzur, M., Hollenbach, D. J., & McKee, C. F. 1989, ApJ, 346, 983 CrossRefGoogle Scholar
Gammon, R. H. 1976, A&A 50, 71 Google Scholar
Garay, G., Moran, J. M., & Haschick, A. D. 1989, ApJ, 338, 244 Google Scholar
Genzel, R., & Downes, D. 1977, A&AS, 30, 145 Google Scholar
Goldreich, P., & Kwan, J. Y. 1974, ApJ, 190, 27 CrossRefGoogle Scholar
Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763 Google Scholar
Goldreich, P., & Sridhar, S. 1997, ApJ, 485, 680 Google Scholar
Gwinn, C. R. 1994a, ApJ, 429, 241 CrossRefGoogle Scholar
Gwinn, C. R. 1994b, ApJ, 429, 253 CrossRefGoogle Scholar
Gwinn, C. R. 1994c, ApJ, 431, L123 CrossRefGoogle Scholar
Gwinn, C. R. 1999, in Interstellar Turbulence, ed. Franco, J. & Carraminana, A. (New York: Cambridge Univ. Press), 159 CrossRefGoogle Scholar
Gwinn, C. R., Moran, J. M., & Reid, M. J. 1992, ApJ, 393, 149 Google Scholar
Hollenbach, D. J., & McKee, C. F. 1979, ApJS, 41, 555 CrossRefGoogle Scholar
Hollenbach, D. J., & McKee, C. F. 1989, ApJ, 342, 306 Google Scholar
Knowles, S. H., et al. 1969, Science, 163, 1055 Google Scholar
Lekht, E., Marquez, A., & Mendoza-Torres, E. 1996, A&AS, 120, 415 Google Scholar
Lekht, E., Marquez, A., & Sorochenko, R. 1995, ApJ, 443, 222 Google Scholar
Lekht, E., Mendoza-Torres, E., & Silantev, N. 1999, Astron. Reports 43, 209.Google Scholar
Liljeström, T. 2000, J. Astron. Data, 6, 2 Google Scholar
Liljeström, T., & Gwinn, C. R. 2000, ApJ, 534, 781 Google Scholar
Liljeström, T., & Gwinn, C. R. 2001, ApJ, submitted Google Scholar
Litvak, M. M. 1970, Phys. Rev. A, 2, 2107 Google Scholar
McKee, C. F., & Zweibel, E. G. 1995, ApJ, 440, 686 Google Scholar
Meeks, M. L., et al. 1969, Science 165, 180 Google Scholar
Münch, G. 1999, in Interstellar Turbulence, ed. Franco, J. & Carraminana, A. (New York: Cambridge Univ. Press), 1 Google Scholar
Serabyn, E., Glisten, R., & Schulz, A. 1993, ApJ, 413, 571 Google Scholar
Sridhar, S. & Goldreich, P. 1994, ApJ, 432, 612 CrossRefGoogle Scholar
Sullivan, W. T. 1971, ApJ, 166, 321 CrossRefGoogle Scholar
Sullivan, W. T., 1973, ApJS, 25, 393 Google Scholar
Walker, R. C., Matsakis, D. N., & Garcia-Barreto, J. A. 1982, ApJ, 255, 128 Google Scholar
White, G. J. 1979, MNRAS, 186, 377 Google Scholar