Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:22:25.875Z Has data issue: false hasContentIssue false

The Solar Tachocline: Limiting Magneto-Tipping Instabilities

Published online by Cambridge University Press:  26 May 2016

P. S. Cally
Affiliation:
Centre for Stellar and Planetary Astrophysics, School of Mathematical Sciences, Monash University, Victoria, Australia 3800
M. Dikpati
Affiliation:
High Altitude Observatory, NCAR, Boulder, 3450 Mitchell Lane, CO 80301, USA
P. A. Gilman
Affiliation:
High Altitude Observatory, NCAR, Boulder, 3450 Mitchell Lane, CO 80301, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two dimensional magneto-shear instabilities in the solar tachocline have been extensively explored in recent years. One of their most notable traits over a wide range of shear and magnetic profiles is a propensity for the magnetic field to tip substantially from its initial axisymmetric configuration, with possible implications for patterns of flux emergence. However, it is found that modifications of the standard models to include either kinetic and magnetic drag, or prograde toroidal velocity jets associated with magnetic bands, can suppress the instabilities, or considerably reduce their nonlinear development. In the case of tip reduction by jets, for a toroidal field of around 100kG in the tachocline (required for sunspots to emerge in sunspot latitudes), simulations indicate that jets capable of reducing tipping below the limits of detection from sunspot patterns at the surface are potentially detectable by helioseismic methods, and should be looked for. Establishing an upper limit to the jet may result in a lower limit for the amount of tipping to be expected.

Type
Part 10: Structural Elements: Magnetic Loops
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Bogdan, T. J., Gilman, P. A., Lerche, I., & Howard, R. F. 1988, ApJ, 327, 451.CrossRefGoogle Scholar
Brown, T. M., Christensen-Dalsgaard, J., Dziembowski, W. A., Goode, P. R., Gough, D. O., & Morrow, C. A. 1989, ApJ, 343, 526.Google Scholar
Caligari, P., Moreno-Insert is, F., & Schüssler, M. 1995, ApJ, 441, 886.Google Scholar
Cally, P. S. 2001, Solar Phys., 199, 231.Google Scholar
Cally, P. S., Dikpati, M., & Gilman, P. A. 2003, ApJ, 582, 1190.CrossRefGoogle Scholar
Choudhuri, A. R., & Gilman, P. A 1987, ApJ, 316, 788.Google Scholar
Christensen-Dalsgaard, J., Howe, R., Schou, J., Thompson, M. J., Toomre, J. 1996, in Provost, J. and Schmider, F-X. eds., Sounding Solar and Stellar Interiors, IAU Symposium, 181.Google Scholar
Dikpati, M., Corbard, T., Thompson, M. J., & Gilman, P. A 2002, ApJ, 575, L41.Google Scholar
Dikpati, M., & Gilman, P.A 2001, ApJ, 552, 348.Google Scholar
Fan, Y., Fisher, G. H., & DeLuca, E. E. 1993, ApJ, 405, 390.Google Scholar
Harvey, J. 1977, in Müller, E. A. (ed.), Highlights of Astronomy, 4, 223.CrossRefGoogle Scholar
Howard, R. F., Gilman, P. I., & Gilman, P. A. 1984, ApJ, 283, 373.Google Scholar
Rempel, M., & Dikpati, M. 2003, ApJ, 584, 524.Google Scholar
Rempel, M., Schüssler, M., & Tóth, G. 2000, A&A, 363, 789.Google Scholar
Zwaan, C. 1992, in Thomas, J. H. & Weiss, N. O. (eds.), Sunspots: Theory and Observations, 75.Google Scholar