Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T06:05:42.435Z Has data issue: false hasContentIssue false

Observations of Protobinary Systems

Published online by Cambridge University Press:  13 May 2016

Lee G. Mundy
Affiliation:
Astronomy Department, University of Maryland, College Park, MD, USA
Leslie W. Looney
Affiliation:
MPE, Garching, Germany
William J. Welch
Affiliation:
Astronomy Department, University of California, Berkeley, CA, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High resolution images at millimeter wavelengths are providing new insights into the formation of binary and multiple star systems. These wavelengths are particularly useful in studying the earliest stages of multiplicity because they trace the bulk material distribution in the circumstellar environment and can penetrate 1000's of magnitudes of visual extinction. Current millimeter wavelength observations are finding a high incidence of multiplicity among young systems and that multiplicity begins at birth, or before. While the statistics are poor, the types of systems found (independent envelope, common envelope, and common disk systems) follow theoretical ideas about binary and multiple star formation. Systems can be identified which exhibit the characteristics of prompt initial collapse, central fragmentation during collapse, and fragmentation in high angular momentum scenarios. Expansion of this work to more systems and to more detailed studies of the structure and kinematics of individual systems will provide valuable insights into the formation of multiple systems.

Type
IV. Initial Conditions for Binary Formation and Protobinary Systems
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

André, P., Ward-Thompson, D., & Barsony, M. Boss, A.P. 2000, in Protostars and Planets IV, ed. Mannings, V., Boss, A. P. & Russell, S., (Tucson: Univ. Az Press), 59.Google Scholar
Barrandco, J. A., & Goodman, A. 1998, ApJ, 504, 207.Google Scholar
Basu, S., & Mouschovias, T. Ch. 1995 ApJ, 452, 386.Google Scholar
Bodenheimer, P., Burkert, A., Klein, R. I., & Boss, A.P. 2000, in Protostars and Planets IV, ed. Mannings, V., Boss, A. P. & Russell, S., (Tucson: Univ. Az Press), 675.Google Scholar
Bonnell, I., Martel, H., Bastien, P., Arcoragi, J-P., & Benz, W. 1991, ApJ, 377, 553.CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 1997, MNRAS, 285, 201.Google Scholar
Boss, A. 1995, Rev. Mex. A. A., 1, 165.Google Scholar
Boss, A. P. 1997, ApJ, 483, 309.Google Scholar
Burkert, A., & Bodenheimer, P. 1993, MNRAS, 264, 798.Google Scholar
Burkert, A., Bodenheimer, P. 2000, ApJ, 543, 822.Google Scholar
Choi, M., Evans, N. J. II, Gregersen, E., & Wang, Y. 1995, ApJ, 448, 742.Google Scholar
Choi, M., Panis, J-F., and Evans, N. J. II 1999, ApJS, 122, 519.Google Scholar
Fiedler, R. A., & Mouschovias, T. Ch. 1993, ApJ, 415, 680.Google Scholar
Foster, P. N., & Chevalier, R. A. 1993, ApJ, 416, 303.Google Scholar
Galli, D., & Shu, F. H. 1993, ApJ, 417, 220.Google Scholar
Ghez, A., McCarthy, D. W., Patience, J. L., & Beck, T. L. 1997, ApJ, 481, 378.Google Scholar
Goldsmith, P. F. & Arquilla, R. 1985, in Protostars and Planets II, ed. Black, D. C. & Matthews, M. S. (Tucson: Univ. of Arizona Press), 137.Google Scholar
Goodman, A, Benson, P. J., Fuller, G. A., & Myers, P. C. 1993, ApJ, 406, 528.Google Scholar
Hatchell, J., Fuller, G. A., Millar, T. J., Thompson, M. A., & MacDonald, G. H. 2000, A&A, 357, 637.Google Scholar
Hunter, C. 1977, ApJ, 489, 293.Google Scholar
Larson, R. B. 1969, MNRAS, 145, 271.Google Scholar
Larson, R. B. 1995, MNRAS, 272, 213.Google Scholar
Launhardt, R., Sargent, A. I., Henning, Th., Zylka, R., & Zinnecker, H. 2001, in this volume.Google Scholar
Lee, C. W., Myers, P. c., & Tafalla, M. 1999, ApJ, 526, 788.Google Scholar
Li, Z-Y, & Shu, F. H. 1997, ApJ, 475, 237.Google Scholar
Looney, L. W., Mundy, L. G., & Welch, W. J. 2000 ApJ, 529, 477.Google Scholar
Looney, et al. 2001, in prep.Google Scholar
Mardones, D., Myers, P. C., Tafalla, M., Wilner, D. J., Bachiller, R., & Garay, G. 1997, ApJ, 489, 719.Google Scholar
Motte, F., André, P., & Neri, R 1998, A&A, 336, 150.Google Scholar
Motte, F., & André, P. 2001, A&A, 2001.Google Scholar
Patience, J., Ghez, A. M., Reid, I. N., Weingerger, A. J. & Matthews, K. 1998, AJ, 115, 1972.Google Scholar
Penston, M. V. 1969, MNRAS, 114, 425.CrossRefGoogle Scholar
Pringle, J. E. 1989, MNRAS, 239, 361.Google Scholar
Sandell, G., & Knee, L. B. 2001, ApJ, 546, L49.CrossRefGoogle Scholar
Simon, M., Chen, W. P., Howell, R. R., Denson, J.A., & Slowik, D. 1992, ApJ, 384, 212.Google Scholar
Shu, F. H. 1977 ApJ, 214, 488.Google Scholar
Whitworth, A., & Summers, D. 1985, MNRAS, 214, 1.Google Scholar