Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T22:55:57.793Z Has data issue: false hasContentIssue false

Large-scale Gas Dynamical Processes Affecting the Origin and Evolution of Gaseous Galactic Halos

Published online by Cambridge University Press:  03 August 2017

Paul R. Shapiro*
Affiliation:
Department of Astronomy The University of Texas at Austin Austin, Texas 78712, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions and superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

Type
III. Theory and Modelling
Copyright
Copyright © Kluwer 1991 

References

REFERENCES

Allen, C. W. (1973) Astrophysical Quantities (London: The Athlone Press).Google Scholar
Bregman, J. N., Harrington, J. P. (1986) Ap. J. , 309, 833.Google Scholar
Edgar, R. J., Chevalier, R. A. (1986) Ap. J. (Lett.) , 310, L27.Google Scholar
Giroux, M. L., Shapiro, P. R. (1990) in Physical Processes in Fragmentation and Star Formation , eds. Capuzzo-Dolcetta, R., Chiosi, C., and De Fazio, A. (Boston: Kluwer Academic), 71.Google Scholar
Kutyrev, A. S., Reynolds, R. J. (1989) Ap. J. (Lett.) , 344, L9.CrossRefGoogle Scholar
Mac Low, M-M., McCray, R. (1988) Ap. J. , 324, 776.Google Scholar
Martin, C., Bowyer, S. (1990) Ap. J. , 350, 242.CrossRefGoogle Scholar
Mineshige, S., Shibata, K., Shapiro, P. R. (1990) Ap. J. , submitted.Google Scholar
Mineshige, S., Shibata, K., Shapiro, P. R., Tajima, T. (1990) in preparation.Google Scholar
Parker, E. N. (1971) Ap. J. , 163, 255.Google Scholar
Raymond, J. C. (1987) private communcation.Google Scholar
Raymond, J. C., Smith, B. W. (1977) Ap. J. Suppl. , 35, 419.Google Scholar
Sargent, W.L.W., Steidel, C. C., Boksenberg, A. (1990) Ap. J. , 351, 364.Google Scholar
Savage, B. D. (1988) in QSO Absorption Lines: Probing the Universe , eds. Blades, J. C., Turnshek, D., Norman, C. A. (New York: Cambridge U. Press), 195.Google Scholar
Savage, B. D., Massa, D. (1987) Ap. J. , 314, 380.Google Scholar
Shapiro, P. R., Benjamin, R. A. (1990) in preparation.Google Scholar
Shapiro, P. R., Field, G. B. (1976) Ap. J. , 205, 762.Google Scholar
Shapiro, P. R., Mineshige, S., Shibata, K. (1990) Ap. J. , submitted.Google Scholar
Songaila, A., Bryant, W., Cowie, L. L. (1989) Ap. J. (Lett.) , 345, L71.Google Scholar
Spitzer, L. (1990) Ann. Rev. Astron. Astrophys. , 28, in press.Google Scholar
Vainshtein, S. I., Ruzmaikin, A. A. (1972) Sov. Astr. , 15, 714.Google Scholar