Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:14:25.824Z Has data issue: false hasContentIssue false

Electrons and X-Ray Emission of Solar Flares

Published online by Cambridge University Press:  19 July 2016

V. G. Kurt*
Affiliation:
Institute of Nuclear Pnysics Moscow State University P. B. 119899 Leninskie Gory, Moscow, USSR

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A statistical analysis of solar flare X-rays and interplanetary particle fluxes, measured onboard VENERA-13, 14 Spacecraft, was performed. The correlation of fluences for different manifestations of solar flares is strong, especially for fast electrons and hard and soft X-ray emissions. Frequency dependence on fluence value ϵi for practically all Kinds of solar flare emission can be described by power law ν (ϵ > ϵO) ∼ ϵ−0.45±0.15 which does not change significantly with solar activity. For different Hα flare importances the values of ϵi were obtained. It is proposed that appearance of certain energy flare frequency is strongly dependent on some scale factor.

Type
VIII. Solar Flares
Copyright
Copyright © Kluwer 1990 

References

REFERENCES

1. Crannel, C. J., Hudson, H. S. (1986) ‘Energetic phenomena on the Sun’, Ed. Woodgate, B. E. and Kundu, M. R. (NASA CP-243a).Google Scholar
2. Barat, C., Chambon, G., Harley, K., et al. (1981), Sp. Sci. Instr. 5, p 229.Google Scholar
3. Data from sol. hard X-ray monitor SIGNE-2M on VENERA-13,14 (1987) Sov. Geoph. Commit. A. N. of the USSR, Moscow, Ed. Kurt, V. G. Google Scholar
4. Kurt, V. G. (1989), In Sol. Plasma Physics, M. Nauka, p 138.Google Scholar
5. Melnikov, V. F., Kurt, V. G., et al. (1988), Sol. Max. Analysis (17-24 June, 1985, Irkutsk, USSR) Add. Issue, Novosibirsk, Nauka, p 366.Google Scholar
6. Daibog, E. I., et al. (1987), 20th Int. Cosm. Ray Conf., V. 3, p 45.Google Scholar
7. Daibog, E. I., Kurt, V. G., et. al. (1988), Izv. A.N. USSR, ser. fis. 52, p 2403.Google Scholar
8. Daibog, E. I., et al. (1989), Sov. Cosm. Res. 27, p 113.Google Scholar
9. Kurt, V. G., et al. (1989), Sov. Cosm. Res., 27, p 425.Google Scholar
10. Melnikov, V. F., et al. (1990), presented at 21th ICR Conf., V5, Adelaida, Australia.Google Scholar
11. Crannel, C. J., et. al. (1982), Ap. J. Lett., 329, p 969.Google Scholar
12. Teske, R. G., Thomas, R. J. (1972), Sol. Phys., 16, p 431.Google Scholar
13. Mayfield, E. B., Lawrence, J. K. (1985), Sol. Phys. 96, p 243.CrossRefGoogle Scholar
14. Lin, R. P., de Pan, L., Kane, S. R. (1984), Sol. Phys., 91, p 345.Google Scholar
15. Daibog, E. I., Kurt, V. G. et al. (1983), Sov. Cosm. Res., 21, p 704.Google Scholar
16. Potter, D.W., Lin, R. P., Anderson, R. A. (198), Ap. J. L., 226, L97.Google Scholar
17. Belovskiy, M. N., Kurt, V. G., et al. (1979), Sov. Cosm. Res., 17, p 906.Google Scholar
18. Hollebeck, V. MAI, et. al. (1975), Sol. Phys. 41, p 189.Google Scholar
19. Neidig, D. F. (1978), Sol. Phys., 57, p 385.Google Scholar
20. Pearson, D.H. et al. (1989), Ap. J. 336, p. 150.CrossRefGoogle Scholar
21. Vestard, T. et. al., SMM observ. Gamma ray Astr. Group Phys. Dep. Univ. of Hampshire. Preprint N HO3224.Google Scholar
22. Kurochka, L. N. (1987), Sov. Astronom. J. 64, p 443.Google Scholar
23. Pustilnik, L. A. (1988), Sov. Astrom. J. Let., 14 p 940 Google Scholar