Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T15:00:45.221Z Has data issue: false hasContentIssue false

Dynamical Friction in dE Globular Cluster Systems

Published online by Cambridge University Press:  03 August 2017

Jennifer M. Lotz
Affiliation:
Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
Bryan W. Miller
Affiliation:
Gemini Observatory, Casilla 603, La Serena, Chile
Henry C. Ferguson
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD, 21218, USA
Massimo Stiavelli
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD, 21218, USA
Rosemary Telford
Affiliation:
University of Wales, Cardiff, Wales CF23YB, U.K.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dynamical friction timescale for globular clusters to sink to the center of a dwarf elliptical galaxy (dE) is significantly less than a Hubble time if the halos have isothermal profiles and the globular clusters formed with the same radial density profile as the underlying stellar population. We examine the summed radial distribution of the entire globular cluster systems and the bright globular cluster candidates in 65 Virgo and Fornax Cluster dEs for evidence of dynamical friction processes. We find that the bright dE nuclei could have been formed from the merger of orbitally decayed massive clusters, but the faint nuclei are several magnitudes fainter than expected. These faint nuclei are found primarily in MV > −14 dEs which have high globular cluster specific frequencies and extended globular cluster systems. In these galaxies, the formation of new star clusters, high central dark matter densities, extended dark matter halos, or tidal interactions may act to prevent dynamical friction from collapsing the entire globular cluster population into a bright nucleus.

Type
Part 4. Star Cluster Formation and Evolution: Theory and Observation
Copyright
Copyright © Astronomical Society of the Pacific 2002 

References

Binney, J. & Tremaine, S. 1987, Galactic Dynamics, (Princeton: Princeton University Press)Google Scholar
Côté, P., Marke, R. O., & West, M. J. 1998, ApJ, 501, 554 Google Scholar
Grebel, E. 1997, Rev. Mod. Astron., 10, 29 Google Scholar
Fall, S. M. & Rees, M. J. 1977, MNRAS, 181, 37P CrossRefGoogle Scholar
Ferguson, H. C., & Sandage, A. 1989, ApJ, 346, L53 Google Scholar
Hernandez, X. & Gilmore, G. 1998, MNRAS, 297, 517 Google Scholar
Lotz, J. M., Telford, R., Ferguson, H. C., Miller, B. W., Stiavelli, M., & Mack, J. 2001, ApJ, 552, 572 Google Scholar
Miller, B. W., Lotz, J. M., Ferguson, H. C., Stiavelli, M., & Whitmore, B. C. 1998, ApJ, 508, L133 Google Scholar
Oh, K. S., Lin, D. N. C., & Richer, H. B. 2000, ApJ, 531, 727 CrossRefGoogle Scholar
Peterson, R. C., & Caldwell, N. 1993, AJ, 105, 1411 Google Scholar
Sandage, A., Binggeli, B., & Tammann, G.A. 1985, AJ, 90, 1759 Google Scholar
Tremaine, S. D., Ostriker, J. P., & Spitzer, L. 1975, ApJ, 196, 407 Google Scholar