Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T09:05:14.891Z Has data issue: false hasContentIssue false

The Celestial Reference System in Relativistic Framework

Published online by Cambridge University Press:  19 July 2016

Han Chun-Hao
Affiliation:
Department of Astronomy Nanjing University Nanjing 210008 People's Republic of China
Huang Tian-Yi
Affiliation:
Department of Astronomy Nanjing University Nanjing 210008 People's Republic of China
Xu Bang-Xin
Affiliation:
Department of Astronomy Nanjing University Nanjing 210008 People's Republic of China

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The concept of reference system, reference frame, coordinate system and celestial sphere in a relativistic framework are given. The problems on the choice of celestial coordinate systems and the definition of the light deflection are discussed. Our suggestions are listed in Sec. 5.

Type
Part 3: Concepts, Definitions, Models
Copyright
Copyright © Kluwer 1990 

References

Atkinson, R.d'E. (1963), “General relativity in Euclidean terms”, Proc. R. Soc. Lond. A , 272, 60.Google Scholar
Brumberg, V.A. (1981), “Relativistic reduction of astronomical measurements and reference frames”, in Gaposchkin, E.M. and Kolaczek, B. (eds.) Reference Coordinate Systems for Earth Dynamics , D. Reidel Publishing Company, Dordrecht, pp. 283294.CrossRefGoogle Scholar
Brumberg, V.A. and Kopejkin, S.M. (1989), “Relativistic theory of celestial reference frames”, in Kovalevsky, J., Mueller, I.I. and Kolaczek, B. (eds.) Reference Frames in Astronomy and Geophysics , Kluwer Academic Publishers, Dordrecht.Google Scholar
Eichhorn, H. (1984), “Inertial systems — definitions and realizations”, Celest. Mech. 34, 1118.CrossRefGoogle Scholar
Epstein, R. and Shapiro, I.I. (1980) “Post-Post-Newtonian deflection of light by the Sun”, Phys. Rev. 22D, 2947.Google Scholar
Fischbach, E. and Freeman, B.S. (1980) “Second-order contribution to the gravitational deflection of light”, Phys. Rev. 22D, 2950.Google Scholar
Fujimoto, M.K., Aoki, S., Nakajima, K., Fukushima, T. and Matzuzaka, S. (1982) “General relativistic framework for the study of astronomical/geodestic reference coordinates”, Proc. Symp. No. 5 of IAG , pp 2635.Google Scholar
Fukushima, T., Fujimoto, M.K., Kinoshita, H. and Aoki, S. (1986) “Coordinate systems in the general relativistic framework”, in Kovalevsky, J. and Brumberg, V.A. (eds.) Relativity in Celestial Mechanics and Astrometry , D. Reidel Publishing Company, Dordrecht, pp. 145168.CrossRefGoogle Scholar
Horn, R.A. and Johnson, C.R. (1985) Matrix Analysis , Cambridge University Press.CrossRefGoogle Scholar
Kaplan, G.H., (ed.) (1981) “The IAU Resolutions on Astronomical Constants, Time Scales and the Fundamental Reference Frame”, U.S. Naval Observatory Circular No. 163.Google Scholar
Kovalevsky, J. and Mueller, I.I. (1981) “Comments on conventional terrestrial and quasi-inertial reference systems”, in Gaposchkin, E.M. and Kolaczek, B. (eds.) Reference Coordinate System for Earth Dynamics , D. Reidel Publishing Company, Dordrecht, pp 375384.CrossRefGoogle Scholar
Kovalevsky, J. (1989) “Stellar reference frames”, in Kovalevsky, J., Mueller, I.I. and Kolaczek, B. (eds.) Reference Frames in Astronomy and Geophysics , Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Kovalevsky, J., Mueller, I.I. and Kolaczek, , (eds.) (1989) Reference Frames in Astronomy and Geophysics , Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
M⊘ller, C. (1972) The Theory of Relativity , 2nd ed., Clarendon Press, Oxford.Google Scholar
Moritz, H. (1981) “Relativistic effects in reference frames” in Gaposchkin, E.M. and Kolaczek, B. (eds.) Reference Coordinate System for Earth Dynamics , D. Reidel Publishing Company, Dordrecht, pp. 4358.CrossRefGoogle Scholar
Murray, C.A. (1981) “Relativistic Astrometry”, Monthly Notices Roy. Astron. Soc. , 195, 639648.CrossRefGoogle Scholar
Murray, C.A. (1983) Vectorial Astrometry , Adam Hilger Ltd. Bristol.Google Scholar
Murray, C.A. (1986) “Relativity in astrometry” in Kovalevsky, J. and Brumberg, V.A. (eds.) Relativity in Celestial Mechanics and Astrometry , D. Reidel Publishing Company, Dordrecht, pp. 169175.CrossRefGoogle Scholar
Richter, G. W. and Matzner, R.A. (1982) “Second-order contributions to gravitational deflection of light in the parameterized post-Newtonian formalism”, Phys. Rev. 26D, 1219.Google Scholar
Sachs, R.K., Wu, H. (1977) General Relativity for Mathematicians , Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
Soffel, M.H. (1989) Relativity in Astronometry, Celestial Mechanics and Geodesy , Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
Standish, E.M. Jr. (1982) “Conversion of positions and proper motions from B 1950.0 to the IAU system at J2000.0”, Astron. Astrophys. 115, 2022.Google Scholar
Will, C.M. (1981) Theory and Experiment in Gravitational Physics , Cambridge University Press.Google Scholar
Xu, C.-M., Xu, J.-J., Yang, L.-T. and Huang, Z.-H. (1984) “The PPN light deflection in any region”, Fudan Journal (Natural Science) 23, 228. (in Chinese).Google Scholar