Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:34:33.409Z Has data issue: false hasContentIssue false

The Semantic Component of the Evoked Potential of Differentiation

Published online by Cambridge University Press:  10 April 2014

Chingis A. Izmailov*
Affiliation:
Moscow State University
Svetlana G. Korshunova
Affiliation:
Moscow State University
Yevgeniy N. Sokolov
Affiliation:
Moscow State University
*
Correspondence concerning this article should be addressed to Chingis A. Izmailov, Moscow State University, 4 Bolshaya Nikitskaya Ulitsa, Moscow (Russia). E-mail: ch_izmailov@mail.ru

Abstract

This work analyzes data from recordings of (occipital and temporal) cortical evoked potentials (called evoked potentials of differentiation (EPD) occurring in humans in response to an abrupt substitution of stimuli. As stimuli we used three groups of words: the names of the ten basic colors taken from Newton's color circle; the names of seven basic emotions forming Shlossberg's circle of emotions; and seven nonsense words comprised of random combinations of letters. Within each group of word stimuli we constructed a matrix of the differences between the amplitudes of mid-latency components of EPD for each pair of words. This matrix was analyzed using the method of multidimensional scaling. As a result of this analysis we were able to distinguish the semantic and configurational components of EPD amplitude. The semantic component of EPD amplitude was evaluated by comparing structure of the data obtained to the circular structures of emotion and color names. The configurational component was evaluated on the basis of the attribute of word length (number of letters). It was demonstrated that the semantic component of the EPD can only be detected in the left occipital lead at an interpeak amplitude of P120-N180. The configurational component is reflected in the occipital and temporal leads to an identical extent, but only in the amplitude of a later (N180-P230) component of the EPD. The results obtained are discussed in terms of the coding of categorized, configurational, and semantic attributes of a visual stimulus.

Este trabajo analiza datos de registros (occipitales y temporales) de potenciales corticales evocados (llamados potenciales de diferenciación evocados-EPD) que ocurren en humanos como respuesta a una sustitución abrupta de estímulos. Como estímulos, se emplearon tres grupos de palabras: los nombres de los diez colores básicos tomados del círculo de color de Newton; los nombres de las siete emocionas básicas que forman el círculo de emociones de Shlossberg; y siete pseudo-palabras formadas por combinaciones de letras al azar. Para cada grupo de palabras-estímulo construimos una matriz de las diferencias entre las amplitudes de los componentes en la mitad de la latencia del EPD para cada pareja de palabras. Se analizó esta matriz con el método del escalonamiento multidimensional. Como resultado de este análisis, pudimos distinguir los componentes semánticos y configuracionales de la amplitud EPD. El componente semántico de la amplitud EPD se evaluó comparando la estructura de los datos obtenidos con las estructuras circulares de la emoción y de los nombres de los colores. El componente configuracional se evaluó mediante el atributo de la longitud de la palabra (número de letras). Se demostró que el componente semántico del EPD sólo puede detectarse en el electrodo occipital izquierdo en una amplitud inter-pico de P120-N180. El componente configuracional se refleja en los electrodos occipitales y temporales de forma idéntica, pero sólo en la amplitud de un componente más tardío (N180-P230) del EPD. Los resultados obtenidos se comentan en términos de la codificación de los atributos categorizados, configuracionales y semánticos de un estímulo visual.

Type
Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chao, L., & Martin, A. (1999). Cortical regions associated with perceiving, naming, and knowing about colors. Journal of Cognitive Neuroscience, 11, 2535.CrossRefGoogle ScholarPubMed
Davis, H., Osterhammel, P.A., Wier, C.C, & Gjerdingen, D.B. (1972). Slow vertex potentials: Interactions among auditory, tactile, electric and visual stimuli. Electroencephalography and Clinical Neurophysiology, 33, 537545.CrossRefGoogle ScholarPubMed
Donchin, E. (1981). Surprise! Surprise? Psychophysiology, 18, 493513.CrossRefGoogle ScholarPubMed
Estevez, O., & Spekreijse, H. (1982). The “silent substitution” method in visual research. Vision Research, 22, 681691.CrossRefGoogle Scholar
Fomin, S.V., Sokolov, E.N., & Vaitkyavichus, G.G. (1979). Isskustvennye organy chuvstv [Artificial sensory organs]. Saint Petersburg: Nauka.Google Scholar
Frumkina, R.M. (1984). Tsvet, smysl, skhodstvo [Color, sense, similarity]. Moscow: Nauka.Google Scholar
Ivanitskiy, A.M., & Strelets, V.B. (1976). Vyzvannyi potentsial i psikhofizicheskie kharakteristiki vospriatiya. Zhurnal vysshei nervnoi deiatelnosti, 24, 793798.Google Scholar
Ivanitskiy, A.M., Strelets, V.B., & Korsakov, I.A. (1984). Informatsionnye protsessy mozga i psikhicheskaya deiatelnost [Informational processes of the brain and psychic activity]. Moscow: NaukaGoogle Scholar
Izard, C. (1980). Emotsii cheloveka (Human Emotions). Moscow: Moscow State University Press.Google Scholar
Izmailov, Ch.A. (1980). Sfericheskaya model tsvetorazlicheniya [Spherical model of color discrimination]. Moscow: Moscow State University Press.Google Scholar
Izmailov, Ch.A., & Chernorizov, A.M. (2005). Yazyk vospriatiya i mozg [The language of perception and the brain]. Psikhologia. Zhurnal Vysshei shkoly ekonomiki, 2, 2252.Google Scholar
Izmailov, Ch.A., Isaichev, S.A., Korshunova, C.G., & Sokolov, E.N. (1998). Tsvetovoi i yarkostnyi komponenty zritelnykh vyzvannykh potentsialov u cheloveka [Color and brightness components of the visual evoked potentials in humans]. Zhurnal vysshei nervnoi deiatelnosti, 48, 777787.Google Scholar
Izmailov, Ch.A., Isaichev, S.A., & Shekhter, E.D. (1998). Dvukhkanalnaya model razlichenia signalov v sensornykh sistemakh [Dual channel model of signal discrimination in sensory systems]. Vestnik Moskovskogo Gosudarstvennogo Universiteta, Seria 14. Psihología, 3, 2940.Google Scholar
Izmailov, Ch.A., Korshunova, S., & Sokolov, E.N. (2001). Relationship between visual evoked potentials and subjective differences between emotional expressions in “face diagrams.” Neuroscience & Behavioral Physiology, 31, 529538.CrossRefGoogle Scholar
Izmailov, Ch.A., Korshunova, C.G., Sokolov, E.N., & Chudina, Yu.A. (2004). Geometricheskaia model razlichenia orientatsii linii, osnovannaia na subektivnykh otsenkakh i zritelnykh vyzvannykh potentsialakh [A geometric model of line orientation based on subjective estimates and visual evoked potentials]. Zhurnal vysshei nervnoi deiatelnosti, 54, 267279.Google Scholar
Izmailov, Ch.A., & Sokolov, E.N. (1991). Spherical model of color and brightness discrimination. Psychological Science, 2, 249259.CrossRefGoogle Scholar
Izmailov, Ch.A., & Sokolov, E.N. (1992). A semantic space of color names. Psychological Science, 3, 105111.CrossRefGoogle Scholar
Izmailov, Ch.A., & Sokolov, E.N. (2004). Subjective and objective scaling of large color differences. In Kaernbach, C., Schroger, E., & Muller, H. (Eds.), Psychophysics beyond sensation. Laws and invariants of human cognition (pp. 2742). Mahwah, NJ/London: Erlbaum.Google Scholar
Izmailov, Ch.A., Sokolov, E.N., & Chernorizov, A.M. (1989). Psikhofiziologia tsvetovogo zrenia [Psychophysiology of color vision]. Moscow: Moscow State University Press.Google Scholar
Izmailov, Ch.A., Sokolov, E.N., & Korshunova, S.G. (2005). Multidimensional scaling of schematically represented faces based on dissimilarity estimates and evoked potentials of differences (EPD) amplitudes. The Spanish Journal of Psychology, 8, 119133.CrossRefGoogle ScholarPubMed
Jeffreys, D.A. (1996). Evoked potentials studies of face and objects processing. Visual Cognition, 3, 138.CrossRefGoogle Scholar
Jolicoeur, P., Gluck, M.A., & Kosslyn, S.M. (1984). Pictures and names: Making the connection. Cognitive Psychology, 16, 243275.CrossRefGoogle ScholarPubMed
Kiroy, V.N., & Ermakov, P.N. (1998). Electroentsefalogramma i funktsionalnye sostoianiya cheloveka [EEG and functional states of humans]. Rostov na Donu: Rostov State Univeristy Press.Google Scholar
Kutas, M., & Hillyard, S.A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203205.CrossRefGoogle ScholarPubMed
Liu, J., Harris, A., & Kanwisher, N. (2002). Stages of processing in face perception in MAG study. Nature Neuroscience,5, 910916.CrossRefGoogle Scholar
Liu, J., Higuch, i M., Marantz, A., & Kanwisher, N. (2000). The selectivity of the occipitotemporal M170 for face. NeuroReport, 11, 337341.CrossRefGoogle Scholar
Martin-Loeches, M., Hinojosa, J.A., Gomez-Jarabo, G., & Rubia, F.J. (2001). An early electrophysiological sign of semantic processing in basal extrastriate areas. Psychophysiology, 38, 114124.CrossRefGoogle ScholarPubMed
Osgood, C.E. (1966). Dimensionality of the semantic space for communication via facial expressions. Scandinavian Journal of Psychology, 7, 130.CrossRefGoogle ScholarPubMed
Paulus, W.M., Homberg, V., Cuninghum, K., Halliday, A., & Ronde, N. (1984). Color and brightness components of foveal visual evoked potentials in man. Electroencephalography and Clinical Neurophysiology, 58, 107119.CrossRefGoogle ScholarPubMed
Regan, D. (1972). Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. London: Chapman & Hall.Google Scholar
Riggs, L.A., & Sternheim, C.E. (1969). Human retinal and occipital potentials evoked by changes of the wavelength of the stimulating light. Journal of the Optical Society of America. 59, 635640.CrossRefGoogle ScholarPubMed
Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–349.CrossRefGoogle Scholar
Rudell, A.P. (1991). The recognition potential contrasted with the P300. International Journal of Neuroscience, 60, 85111.CrossRefGoogle ScholarPubMed
Rudell, A. P., & Hua, I. (1995). The recognition potential latency and word image degradation. Brain and language, 51, 229241.CrossRefGoogle ScholarPubMed
Shepard, R.W. (1964). Circularity in judgments of relative pitch. Journal of the Acoustic Society of America, 36, 23462353.CrossRefGoogle Scholar
Shepard, R. (1981). Mnogomernoe shkalirovanie i nemetricheskie predstavlenia. Normativnye i deskriptivnye modeli priniatia reshenii [Multidimensional scaling and non-metric representation. Normative and descriptive models of decision making]. Materials of the Soviet-American Symposium (pp. 8497). _oscow: Nauka.Google Scholar
Shepard, R.N. (1987). Towards a universal law of generalization for psychological space. Science, 237, 13171323.CrossRefGoogle Scholar
Shepard, R.N. (2001). Perceptual-cognitive universals as reflections of the world. Behavioral and Brain Sciences, 24, 581601CrossRefGoogle ScholarPubMed
Shepard, R.N., & Carroll, J.D. (1966). Parametric representation of nonlinear data structures In Krishnaiah, P. R. (Ed.), Multivariate analysis (pp. 561592). New York: Academic Press.Google Scholar
Shepard, R.N., & Cooper, L.A. (1992). Representation of colors in the blind, color-blind, and normally sighted. Psychological Science, 3, 97104.CrossRefGoogle Scholar
Sokolov, E.N., & Izmailov, Ch.A. (1988). Three-stage model of color vision. Sensory Systems, 2, 314320.Google Scholar
Sokolov, E.N., & Izmailov, Ch.A. (2006). Vyzvannye potentsialy v sfericheskoi modeli kognitivnykh protsessov [The evoked potentials in the spherical model of cognitive processes]. Neirokompiutery: razrabotka i primenenie, 4, 90105.Google Scholar
Streit, M., Wolver, W., Brinkmeyer, J., Ihl, R., & Gaebel, W. (2000). Electrophysiological correlates of emotional and structural face processing in humans. Neuroscience Letters, 278, 1316.CrossRefGoogle ScholarPubMed
Strongman, K.T. (1978). The psychology of emotion. New York: Wiley.Google Scholar
Sugase, Y., Yamane, S., Ueno, S., & Kawano, K. (1999). Global and fine information coded by single neurons in the temporal visual cortex. Nature, 400, 869873.CrossRefGoogle ScholarPubMed
Sutton, S., Braren, M.M., Zubin, J.M., & John, E.R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150, 11871188.CrossRefGoogle ScholarPubMed
Tanaka, J.W., & Taylor, M. (1999). Object categories and expertise: Is the basic level in the eye of the beholder? Cognitive Psychology, 23, 457482.CrossRefGoogle Scholar
Wyszeckl, G.W., & Stiles, W.S. (1982). Color science, concepts and methods, quantitative data and formulas (2nd ed.). New York/Toronto/Singapore: Wiley.Google Scholar
Yingling, C.D., & Hosobychi, Y. (1984). Subcortical correlation of P300 in human. EEG and Clinical Neurophysiology, 59, 7276.Google Scholar