Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:45:20.278Z Has data issue: false hasContentIssue false

Presaccadic Brain Potentials in Conditions of Covert Attention Orienting

Published online by Cambridge University Press:  10 April 2014

Maria Slavutskaya*
Affiliation:
Laboratory of Comparative Physiology of Higher Nervous Activity
Valerii V. Shulgovskii*
Affiliation:
Department of Higher Nervous Activity Moscow, State University
*
Correspondence concerning this article should be addressed to Maria Slavutskaya., Faculty of Biology, Moscow State University, GSP-2, Leninskye gory d.1, str. 12, Moscow - 119992 Russia. E-mail: mvslav@yandex.ru
Valerii V. Shulgovskii, Faculty of Biology MGU, Dpt. Higher Nervous Activity, Phone: +7(495)939-2837, FAX: +7(495)939-2837 Emails: shulg@protein.bio.msu.ru and shulg@mail.ru

Abstract

Twelve healthy subjects underwent investigation of averaged (electroencephalogram) EEG potentials during preparation for motor activity and in the latent period (LP) of visually evoked saccades by presentation of stimuli using Posner's (1980) design of “cost-benefit.” It has been shown that covert spatial attention orientation leads to an increase in amplitude and decrease in latency of presaccadic initiation potential peaks within the saccadic latent period (LP) (P-100, N –50). Processes of covert orientation of attention during the interstimulus interval period of anticipation of the target stimulus correlate with the increase of slow negativity of fronto-parietal-temporal localization. Spatial-temporal changes of presaccadic potentials are evidence of the fact that orientation of attention during motor preparation and saccadic initiation is reflected in intensification of fronto-parietal networks of saccadic control and attention, activating the fronto-medio-thalamic and thalamo-parietal modulating systems.

Se examinaron los potenciales EEG promediados de doce sujetos sanos durante su preparación para actividad motor y en el período latente de sacádicos evocados visualmente por la presentación de estímulos según el diseño de “coste-beneficio” de Posner (1980). Se ha mostrado que la orientación de la atención espacial encubierto lleva a un incremento en la amplitud y un decremento en la latencia de los picos potenciales de iniciación presacádica dentro del período sacádico latente (P-100, N -50). Los procesos encubiertos de orientación de la atención durante el período del intervalo inter-estímulo de anticipación del estímulo meta correlacionan con el incremento de la negatividad lenta de localización fronto-parietal. Cambios espacio-temporales de potenciales presacádicos son evidencia del hecho de que la orientación de la atención durante la preparación motora y la iniciación sacádica se refleja en la intensificación de las redes fronto-parietales de control y atención, activando los sistemas de modulación fronto-medio-talámicos y tálamo-parietales.

Type
Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, R.A., Gnadt, J.W. (1989). Posterior parietal cortex. In Wurts, R., R. & Goldberg, M. (Eds.), The neurobiology of saccadic eye movements (pp. 315335). Amsterdam, Elsevier Science.Google Scholar
Arezzo, J., & Vaughan, H.G. (1980). Intracortical sources and surface topography of motor potential in the monkey. Progress of Brain Research, 54, 77.CrossRefGoogle ScholarPubMed
Barret, G., Shibasaki, H., & Neshige, R. (1986). Cortical potentials preceding voluntary movement: Evidence for three periods of preparation in man. Electroencephalography and Clinical Neurophysiology, 63, 327339.CrossRefGoogle Scholar
Batuev, A.C. (2001). Stanovlenie psikhofiziologii v Sankt-Peterburgskom Gosudatstvennom Universitete [The establishment of psychophysiology in the Saint-Petersburg University] Zhurnal Vysshei Nervnoi Deyatelnosti, 51, 1216.Google Scholar
Bon, L., & Lucchetti, C. (1992). The dorsomedial frontal cortex of the Macaca monkey: Fixation and saccade-related activity. Experimental Brain Research, 89, 571580.CrossRefGoogle ScholarPubMed
Bruce, C.J. (1990). Integration of sensory and motor signals in primate frontal eye fields. Journal of Neurophysiology, 64, 489508.Google Scholar
Coull, J.T. (1998). Neural correlates of attention and arousal insights from electrophysiology, function neuroimaging and psychopharmacology. Progress in Neurobiology, 55, 343361.CrossRefGoogle ScholarPubMed
Deecke, L., Heis, B., Kornhuber, H.H., Lang, M., & Lang, W. (1984). Brain potentials associated with voluntary manual tracing. Annual of New York Academy of Science, 374, 361.Google Scholar
Fischer, B., & Breitmeyer, B. (1987). Mechanism of visual attention revealed by saccadic eye movement. Neuropsychology, 25, 7378.CrossRefGoogle Scholar
Gaymard, B., Ploner, C.J., Rivaud, S., Vermersch, A.I., & Pierro-Deseilligny, C. (1998). Cortical control of saccades. Experimental Brain Research, 123, 159163.CrossRefGoogle ScholarPubMed
Goldberg, M.E., & Segraves, M.A. (1989) The visual and frontal cortex. Neurobiology of saccadic eye movements. Reviews of Oculomotor Research, 2, 283310.Google Scholar
Jagla, F., & Zikmund, V. (1994). Differences in eye movement related potentials with visually triggered horizontal and vertical saccades. In d'Ydwalle, G. & Van Rensbergen, J. (Eds.), Visual and oculomotor functions. Advances in eye movement research. (pp. 1930). Amsterdam: Tocio.CrossRefGoogle Scholar
Laberge, D. (2000). Networks of attention. In Gazzaniga, M.S. (Ed.), The new cognitive neurosciences (pp. 711724). Cambridge, MA: MIT Press.Google Scholar
Mangun, G.R., Jha, A.P., Hopfinger, J.B., & Handy, T.C. (2000). The temporal dynamics and functional architecture of attentional processes in human extrastriate cortex. In Gazzaniga, M.S. (Ed.), The new cognitive neurosciences (pp. 701709). Cambridge, MA: MIT Press.Google Scholar
Machinskaya, R.I. (2003). Neirofiziologicheskie mekhanizmi proizvolnogo vnimaniya (analiticheskiy obzor). (Neurophysiological mechanisms of voluntary attention: Analytical review). Zhurnal Vysshei Nervnoi Deyatelnosti, 53, 133150.Google Scholar
Middleton, F., & Strick, P.L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236250.CrossRefGoogle ScholarPubMed
Naatanen, R. (1998). Vnimamie i funktsii mozga. (Attention and the brain function). Moscow University Press, 559.Google Scholar
Platt, M.L., & Glimcher, P.W. (1997). Responses of intraparietal neurons to saccadic targets and visual distractors. Journal of Neurophysiology, 78, 15741589.CrossRefGoogle ScholarPubMed
Pierrot-Deseiligny, C., Israel, I., Berthoz, A., Rivaud, S., & Gaymard, B. (1993). Role of the different frontal lobe areas in the control of the horizontal component of memory-guided saccades in man. Experimental Brain Research, 95, 166171.CrossRefGoogle Scholar
Posner, M. (1980). Orienting of attention. Journal of Experimental Psychology, 32, 321.CrossRefGoogle ScholarPubMed
Richards, J.E. (2003). Cortical sources of event-related potentials in the prosaccadic and antisaccadic task. Psychophysiology, 6, 878894.CrossRefGoogle Scholar
Rizzolatti, G., Riggio, L., Dascola, L., & Umilta, C. (1987). Reorientation attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 3140.CrossRefGoogle ScholarPubMed
Robinson, D.L, Bowman, E.M., & Kertzman, C. (1995). Covert orienting of attention in macaques. II. Contribution of parietal cortex. Journal of Neurophysiology, 74, 257276.Google ScholarPubMed
Rutman, E.M. (1979). Vyzvannye potentsiali v psikhologii i psikhofiziologii (Evoked potentials in psychology and psychophysiology). Moscow: Nauka.Google Scholar
Slavutskaya, M.V., Solovieva, E.V., & Shulgovskii, V.V. (2001). Velichina latentnogo perioda sakkadicheskikh dvizheniy glaz v usloviyakh veroiyatnostnogo prediyavleniya zritelnoi tseli (Saccadic latency during probability presentation of a visual target in man). Zhurnal Vysshei Nervnoi Deyatelnosti, 51, 106109.Google Scholar
Slavutskaya, M.V., & Shulgovskii, V.V. (2002). Medlennye negativnye potentsiali golovnogo mozga cheloveka v period fiksatsii i podgotovki sakkad na zritelnye stimuli [Slow negative cortical potential during the eye fixation and preparing of visual-triggering saccades in man]. Zhurnal Vysshei Nervnoi Deyatelnosti, 52, 551562.Google Scholar
Slavutskaya, M.V., & Shulgovskii, V.V (2003). Pozitivni potentsiali golovnogo mozga cheloveka na razlichnikh etapach podgotovki zritelno-vyzvannoi sakkadi (Positive potentials of human brain at different stages of preparation of visually triggering saccades). Zhurnal Vysshei Nervnoi Deyatelnosti, 53, 341350.Google Scholar
Slavutskaya, M.V., & Shulgovskii, V.V. (2005). Siemina T.K. Vliyanie napravlennogo vnimaniya na potentsiali golovnogo mozga pri veroiatnostnom prediyavlenii zritelnikh stimulov (Directed attention influence on human brain potentials during probability visual stimulation). Zhurnal Vysshei Nervnoi Deyatelnosti, 55, 796805.Google Scholar
Suvorov, N.F., & Tairov, O.P. (1985). Psichofiziologicheskie mechanizmi napravlennogo vnimania (Psychophysiological mechanisms of directed attention). Leningrad: Nauka.Google Scholar
Shibasaki, H., Barret, G., Halliday, E., & Halliday, A. (1980). Components of the movement-related cortical potential and their scalp topography. Electroencephalography and Clinical Neurophysiology, 4, 213226.CrossRefGoogle Scholar
Schlag-Rey, M., & Schlag, J. (1989). The central thalamus. In Wurts, R. & Goldberg, M. (Eds.), The neurobiology of saccadic eye movements (pp. 361390). Amsterdam: Elsevier Science.Google Scholar