Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:01:08.106Z Has data issue: false hasContentIssue false

Distance perception in a natural outdoor setting: is there a developmental trend to overconstancy?

Published online by Cambridge University Press:  10 April 2014

José A. Da Silva*
Affiliation:
Universidade de São Paulo at Ribeirão Preto, Brazil
Elton H. Matsushima
Affiliation:
Universidade Federal Fluminense, Niterói, Brazil
J. Antonio Aznar-Casanova
Affiliation:
Universidad de Barcelona, Spain
Nilton P. Ribeiro-Filho
Affiliation:
Universidade Federal do Rio de Janeiro, Brazil
*
Correspondence concerning this article should be sent to José Aparecido Da Silva. Departamento de Psicologia e Educação, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, CEP: 14040-901, Vila Monte Alegre, Ribeirão Preto, SP, Brazil. Phone: +55 1636333728. Fax: +55 16 36333728. e-mail: jadsilva@ffclrp.usp.br

Abstract

The main purpose of the present study was to investigate whether in natural environment, using very large physical distances, there is a trend to overconstancy for distance estimates during development. One hundred and twenty-nine children aged 5 to 13 years old and twenty-one adults (in a control group), participated as observers. The observer's task was to bisect egocentric distances, ranging from 1.0 to 296.0 m, presented in a large open field. The analyses focused on two parameters, constant errors and variable errors, such as measuring accuracy and precision, respectively. A third analysis focused on the developmental pattern of shifts in constancy as a function of age and range of distances. Constant error analysis showed that there are two relevant parameters for accuracy, age, and range of distances. For short distances, there are three developmental stages: 5-7 years, when children have unstable responses, 7-11, underconstancy, and 13 to adulthood, when accuracy is reached. For large distances, there is a two-stage development: 5-11 years, with severe underconstancy, and beyond this age, with mild underconstancy. Variable errors analyses indicate that precision is noted for 7 year-old children, independently of the range of distances. The constancy analyses indicated that there is a shift from constancy (or slightly overconstancy) to underconstancy as a function of physical distance for all age groups. The age difference is noted in the magnitude of underconstancy that occurs in larger distances, where adults presented lower levels of underconstancy than children. The present data were interpreted as due to a developmental change in cognitive processing rather than to changes in visual space perception.

El principal objetivo de este estudio fue investigar si en un medio natural, empleando distancias físicas muy grandes, hay una tendencia a sobre-constancia para las estimaciones de distancias durante el desarrollo evolutivo. Participaron como observadores 129 niños de edades entre 5 y 13 años y 21 adultos (en un grupo control). La tarea de los observadores consistió en biseccionar unas distancias egocéntricas, que variaban entre 1,0 y 296,0 m, presentadas en un gran campo abierto. El análisis se centró en dos parámetros, error constante y error variable, de la exactitud y precisión de medida, respectivamente. Un tercer análisis se centró en el patrón evolutivo de cambios en la constancia en función de la edad y el rango de distancias. El análisis de los errores constantes mostró que hay dos parámetros relevantes para la precisión, edad y rango de distancias. Para distancias cortas, hay tres fases evolutivas: 5-7 años, cuando los niños dan respuestas inestables, 7-11, infra-constancia, y 13 años hasta la adultez, cuando alcanzan la exactitud (constancia). Para las distancias largas, hay un desarrollo de dos fases: 5-11 años, con infra-constancia severa, y más allá de esta edad, con ligera infra-constancia. El análisis del error variable indica que se alcanza precisión a partir de 7 años, con independencia del rango de distancias. En análisis de la constancia indica que existe un cambio desde la constancia (o una ligera sobre-constancia) a infra-constancia en función de la distancia física para todos los grupos de edad. La diferencia de edad se nota en la magnitud de la infra-constancia que ocurre en las distancias más largas, donde los adultos presentaban niveles menores de infra-constancia que los niños. Estos datos se interpretan como debidos a un cambio evolutivo en el procesamiento cognitivo más que a cambios en la percepción visual del espacio.

Type
Monographic Section: Spatial Vision and Visual Space
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumberger, B., & Flückiger, M. (2004). The development of distance estimation in optic flow. Perception, 33, 10811099.CrossRefGoogle ScholarPubMed
Bond, B., & Stevens, S.S. (1969). Cross-modality matching of brightness to loudness by 5-year-olds. Perception & Psychophysics, 6, 337339.CrossRefGoogle Scholar
Brunswick, E. (1955). Representative design and probabilistic theory of functional psychology. Psychological Review, 62, 193217.CrossRefGoogle Scholar
Collins, J.R. (1976). Distance perception as a function of age. Australian Journal of Psychology, 28, 109113.CrossRefGoogle Scholar
Da Silva, J.A. (1983). Scales for subjective distance in children and adults in a large open field. The Journal of Psychology, 113, 221229.CrossRefGoogle Scholar
Da Silva, J.A., & Rozestraten, R.J.A. (1979). Construção de uma escala subjetiva de distância pelo método do fracionamento. Psicologia, 5, 4558.Google Scholar
Degelman, D. (1977). Developmental processes and motion parallax. (Doctoral dissertation, University of Pittsburgh, 1976) Dissertation Abstracts International, 38, 389.Google Scholar
Degelman, D., & Rosinski, R. (1979). Motion parallax and children's distance perception. Developmental Psychology, 15, 147152.CrossRefGoogle Scholar
Fischer, M.H. (2001). Cognition in the bisection task. Trends in Cognitive Sciences, 5, 460462.CrossRefGoogle ScholarPubMed
Gibson, E.J. (1969). Principles of perceptual learning and development. New York: Appleton-Century Crofts.Google Scholar
Gibson, E.J., Bergman, R., & Purdy, J. (1955). The effect of prior training with a scale of distance on absolute and relative estimation of distance over ground. Journal of Experimental Psychology, 50, 97105.CrossRefGoogle Scholar
Gogel, W.C. (1974). Cognitive factors in spatial responses. Psychologia, 17, 213225.Google Scholar
Gogel, W.C. (1993). The analysis of perceived space. In Masin, S.C. (Ed.), Foundations of perceptual theory. (pp. 113182). Amsterdam: Elsevier.CrossRefGoogle Scholar
Gogel, W.C., & Da Silva, J.A. (1987). A two-process theory of the response to size and distance. Perception & Psychophysics, 41, 220238.CrossRefGoogle ScholarPubMed
Haber, R.N., & Levin, C.A. (2001). The independence of size and distance perception. Perception & Psychophysics, 63, 11401152CrossRefGoogle ScholarPubMed
Harway, N.I. (1963). Judgment of distance in children and adults. Journal of Experimental Psychology, 65, 385390.CrossRefGoogle ScholarPubMed
Jewell, G., & McCourt, M.E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection task. Neuropsychologia, 38, 93110.CrossRefGoogle Scholar
Künnapas, T. (1960). Scales for subjective distance. Scandinavian Journal of Psychology, 1, 187192.CrossRefGoogle Scholar
McCourt, M.E., & Olafson, C. (1997). Cognitive and perceptual influences on visual line bisection: Psychophysical and chronometric analyses of pseudoneglect. Neuropsychologia, 35, 369380.CrossRefGoogle ScholarPubMed
Milner, A.D., Brechmann, M., & Pagliarini, L. (1992). To halve and to halve not: An analysis of line bisection judgments in normal subjects. Neuropsychologia, 30, 515526.CrossRefGoogle ScholarPubMed
Miskie, D., Dainoff, M., Sherman, R., & Johnston, L. (1975). Does distance perception change as the degree of enclosure changes: Some psychophysical studies under real and simulated conditions. Man-Environment Systems, 5, 317320.Google Scholar
Piaget, J. (1969). Le développement des perceptions en fonction de l'âge. In Fraisse, P. & Piaget, J. (Eds.), La Perception (Vol. VI). Paris: PUF.Google Scholar
Rozestraten, R.J.A., & Da Silva, J.A. (1977). Avaliação de ângulos iguais e ângulos subjetivamente equivalentes em campo aberto. Estudos Cognitivos, 2, 512.Google Scholar
Siegel, A.W., & McBurney, D.H. (1970). Estimations of line length and number: A developmental study. Journal of Experimental Child Psychology, 10, 170180.CrossRefGoogle Scholar
Teghtsoonian, M. (1980). Children's scale of length and loudness: A developmental application of cross-modal matching. Journal of Experimental Child Psychology, 20, 290307.CrossRefGoogle Scholar
Teghtsoonian, M., & Beckwith, J.B. (1976). Children's size judgments when size and distance vary: Is there a developmental trend to overconstancy? Journal of Experimental Child Psychology, 22, 2339.CrossRefGoogle Scholar
Teghtsoonian, M., & Teghtsoonian, R. (1969). Scaling apparent distance in natural indoor settings. Psychonomic Science, 16, 281283.CrossRefGoogle Scholar
Teghtsoonian, R., & Teghtsoonian, M. (1970). Scaling apparent distance in natural outdoor settings. Psychonomic Science, 21, 215216.CrossRefGoogle Scholar
Teghtsoonian, R., & Teghtsoonian, M. (1978). Range and regression effects in magnitude scaling. Perception & Psychophysics, 24, 305314.CrossRefGoogle ScholarPubMed
Wohlwill, J.F. (1963). The development of “overconstancy” in space perception. In Lipsitt, L.P. & Spiker, C.C. (Eds.), Advances in child development and behavior. Vol. I (pp. 265312). New York: Academic Press.Google Scholar
Wohlwill, J.F. (1970). Perceptual development. In Reese, H.W. & Lipsitt, L.P. (Eds.), Experimental child psychology (pp. 3168). New York: Academic Press.Google Scholar
Zwislocki, J.J., & Goodman, D.A. (1980). Absolute scaling of sensory magnitude: A validation. Perception & Psychophysics, 28, 2838.CrossRefGoogle ScholarPubMed