Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:01:57.521Z Has data issue: false hasContentIssue false

Seed germination, hydrothermal time models and the effects of global warming on a threatened high Andean tree species

Published online by Cambridge University Press:  04 October 2012

Edgar E. Gareca*
Affiliation:
Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, Box 3425, 3001Leuven, Belgium Centro de Biodiversidad y Genética, Universidad Mayor de San Simón, Casilla 538, Cochabamba, Bolivia
Filip Vandelook
Affiliation:
Laboratory of Plant Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, D-35043Marburg, Germany
Milton Fernández
Affiliation:
Centro de Biodiversidad y Genética, Universidad Mayor de San Simón, Casilla 538, Cochabamba, Bolivia
Martin Hermy
Affiliation:
Department Earth & Environmental Sciences, Division Forest, Nature and Landscape Research, KU Leuven, Celestijnenlaan 200E, 3001Leuven, Belgium
Olivier Honnay
Affiliation:
Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, Box 3425, 3001Leuven, Belgium

Abstract

Seed germination is a crucial event in a plant's life cycle. Because temperature and water availability are important regulators of seed germination, this process will likely be influenced by global warming. Insight into the germination process under global warming is thus crucial, and requires the study of a wide range of water availability and temperature conditions. As hydrothermal time (HTT) models evaluate seed germination for any combination of water potential and temperature, they can be suitable to predict global warming effects on seed germination. We studied the germination characteristics of the high Andean endemic tree species Polylepis besseri (Rosaceae), using HTT models. We were especially interested in the potential effects of global warming on seed germination. Assembly of HTT models for P. besseri was fairly straightforward due to the lack of a seed dormancy mechanism. The models allowed prediction of Polylepis germination under constant and alternating temperatures. Initially, a global warming induced increase in the field minimum and mean temperature will increase P. besseri germination, but as maximum temperatures rise above the optimum temperature for the species, seed germination will become jeopardized. Effects of global warming on seed germination are currently considerably underexplored. HTT models prove to be useful tools to study a plant species' general germination characteristics, and how they may become affected under global warming. For the endemic mountain tree species P. besseri, we predict an increase, followed by a decrease of seed germination under global warming.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. (2003) When and how many? Hydrothermal models and the prediction of seed germination. New Phytologist 158, 13.CrossRefGoogle Scholar
Allen, P.S., Meyer, S.E. and Khan, M.A. (2000) Hydrothermal time as a tool in comparative germination studies. pp. 401410in (Eds) Seed biology: Advances and applications. New York, CABI Publishing.Google Scholar
Alvarado, V. and Bradford, K.J. (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell and Environment 25, 10611069.CrossRefGoogle Scholar
Alvarado, V. and Bradford, K.J. (2005) Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Science Research 15, 7788.CrossRefGoogle Scholar
Barnabás, B., Jaeger, K. and Feher, A. (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell and Environment 31, 1138.CrossRefGoogle ScholarPubMed
Baskin, C.C. and Baskin, J.M. (1998) Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Bradford, K.J. (1990) A water relations analysis of seed-germination rates. Plant Physiology 94, 840849.CrossRefGoogle ScholarPubMed
Bradford, K.J. (1995) Water relations in seed germination. pp. 351396in (Eds) Seed development and germination. New York, Marcel Dekker, Inc.Google Scholar
Bradford, K.J. (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50, 248260.CrossRefGoogle Scholar
Cheng, Z.Y. and Bradford, K.J. (1999) Hydrothermal time analysis of tomato seed germination responses to priming treatments. Journal of Experimental Botany 50, 8999.CrossRefGoogle Scholar
Christensen, M., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C.G., Räisänen, J., Rinke, A., Sarr, A.andWhetton, P. (2007) Regional climate projections. pp. 847940in et al. (Eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press.Google Scholar
Cipriotti, P., Flombaum, P., Sala, O.andAguiar, M. (2008) Does drought control emergence and survival of grass seedlings in semi-arid rangelands? An example with a Patagonian species. Journal of Arid Environments 72, 162174.CrossRefGoogle Scholar
Conner, L.N. (1987) Seed germination of five subalpine Acaena species. New Zealand Journal of Botany 25, 14.CrossRefGoogle Scholar
Dahal, P. and Bradford, K.J. (1994) Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Science Research 4, 7180.CrossRefGoogle Scholar
Dahal, P., Bradford, K.J. and Jones, R.A. (1990) Effects of priming and endosperm integrity on seed-germination rates of tomato genotypes. 1. Germination at suboptimal temperature. Journal of Experimental Botany 41, 14311439.CrossRefGoogle Scholar
Dainese, M. (2011) Impact of land use intensity and temperature on the reproductive performance of Dactylis glomerata populations in the south-eastern Alps. Plant Ecology 212, 651661.CrossRefGoogle Scholar
Davis, M.B., Shaw, R.G. and Etterson, J.R. (2005) Evolutionary responses to changing climate. Ecology 86, 17041714.CrossRefGoogle Scholar
de Dios Miranda, J., Padilla, F.M. and Pugnaire, F.I. (2009) Response of a Mediterranean semiarid community to changing patterns of water supply. Perspectives in Plant Ecology Evolution and Systematics 11, 255266.CrossRefGoogle Scholar
De Frenne, P., Graae, B.J., Kolb, A., Brunet, J., Chabrerie, O., Cousins, S.A.O., Decocq, G., Dhondt, R., Diekmann, M., Eriksson, O., Heinken, T., Hermy, M., Jogar, U., Saguez, R., Shevtsova, A., Stanton, S., Zindel, R., Zobel, M. and Verheyen, K. (2010) Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L. Forest Ecology and Management 259, 809817.CrossRefGoogle Scholar
De Luis, M., Verdú, M. and Raventós, J. (2008) Early to rise makes a plant healthy, wealthy, and wise. Ecology 89, 30613071.CrossRefGoogle Scholar
Donohue, K., de Casas, R.R., Burghardt, L., Kovach, K.andWillis, C.G. (2010) Germination, postgermination adaptation, and species ecological ranges. Annual Review of Ecology Evolution and Systematics 41, 293319.CrossRefGoogle Scholar
Dorado, J., Fernandez-Quintanilla, C. and Grundy, A.C. (2009) Germination patterns in naturally chilled and nonchilled seeds of fierce thornapple (Datura ferox) and velvetleaf (Abutilon theophrasti). Weed Science 57, 155162.CrossRefGoogle Scholar
Driesch, P. and Kessler, M. (1996) Design and techniques for reforestation programs with Polylepis and other native trees. pp. 209231in Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia: A contribution to sustainable natural resource management in the Andes. DIVA Technical Report 11. NORDECO. Copenhagen, Centre for Research on the Cultural and Biological Diversity of Andean Rainforest (DIVA).Google Scholar
Edwards, G.R., Clark, H. and Newton, P.C.D. (2001) The effects of elevated CO2 on seed production and seedling recruitment in a sheep-grazed pasture. Oecologia 127, 383394.CrossRefGoogle Scholar
Ellis, R.H. and Barret, S. (1994) Alternating temperatures and rate of seed germination in lentil. Annals of Botany 74, 519524.CrossRefGoogle Scholar
Ellis, R.H., Covell, S., Roberts, E.H. and Summerfield, R.J. (1986) The influence of temperature on seed-germination rate in grain legumes. 2. Intraspecific variation in Chickpea (Cicer arietinum L.) at constant temperatures. Journal of Experimental Botany 37, 15031515.CrossRefGoogle Scholar
Enrico, L., Funes, G. and Cabido, M. (2004) Regeneration of Polylepis australis Bitt. in the mountains of central Argentina. Forest Ecology and Management 190, 301309.CrossRefGoogle Scholar
Fernández, M., Mercado, M., Arrázola, S. and Martínez, E. (2001) Structure and floral composition of one forest fragment of Polylepis besseri Hieron. subsp. besseri in Sacha Loma (Cochabamba). Revista Boliviana de Ecología y Conservación Ambiental 9, 1527.Google Scholar
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Fischlin, A., Midgley, G.F., Price, J.T., Leemans, R., Gopal, B., Turley, C., Rounsevell, M.D.A., Dube, O.P., Tarazona, J. and Velichko, A.A. (2007) Ecosystems, their properties, goods and services. pp. 211272in (Eds) Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press.Google Scholar
Fjeldså, J. and Kessler, M. (1996) Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia. A contribution to sustainable natural resource management in the Andes. DIVA Technical Report 11. NORDECO. Copenhagen, Centre for Research on the Cultural and Biological Diversity of Andean Rainforest (DIVA).Google Scholar
Forcella, F., Arnold, R.L.B., Sanchez, R. and Ghersa, C.M. (2000) Modeling seedling emergence. Field Crops Research 67, 123139.CrossRefGoogle Scholar
Gareca, E.E., Martinez, Y.Y., Navarro, F. and Cahill, J.R.A. (2007) Bases biológicas para un programa de reforestación con Polylepis subtusalbida en Cochabamba. pp. 14131419in (Eds) Congreso internacional sobre desarrollo, medio ambiente y recursos naturales: Sostenibilidad a múltiples niveles y escalas (volume III). Cochabamba, Universidad Mayor de San Simón.Google Scholar
Gareca, E.E., Hermy, M., Fjeldså, J. and Honnay, O. (2010) Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodiversity and Conservation 19, 33273346.CrossRefGoogle Scholar
Graae, B.J., Alsos, I.G. and Ejrnaes, R. (2008) The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites. Plant Ecology 198, 275284.CrossRefGoogle Scholar
Grieser, J., Gommes, R. and Bernardi, M. (2006) New LocClim – the local climate estimator of FAO. Geophysical Research Abstracts 8, 08305.Google Scholar
Gummerson, R.J. (1986) The effect of constant temperatures and osmotic potentials on the germination of sugar-beet. Journal of Experimental Botany 37, 729741.CrossRefGoogle Scholar
Harper, J.L. (1977) Population biology of plants. London, Academic Press.Google Scholar
Hedhly, A., Hormaza, J.I. and Herrero, M. (2009) Global warming and sexual plant reproduction. Trends in Plant Science 14, 3036.CrossRefGoogle ScholarPubMed
Kebreab, E. and Murdoch, A.J. (1999) Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany 50, 655664.CrossRefGoogle Scholar
Klady, R.A., Henry, G.H. and Lemay, V. (2011) Changes in high arctic tundra plant reproduction in response to long-term experimental warming. Global Change Biology 17, 16111624.CrossRefGoogle Scholar
Lampei, C. and Tielbörger, K. (2010) Evolvability of between-year seed dormancy in populations along an aridity gradient. Biological Journal of the Linnean Society 100, 924934.CrossRefGoogle Scholar
Marcora, P., Hensen, I., Renison, D., Seltmann, P. and Wesche, K. (2008) The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Diversity and Distributions 14, 630636.CrossRefGoogle Scholar
Martinez-Costas, E.M. (2003) Estudio fenológico de Polylepis besseri subsp. besseri Hieronymus (Rosaceae) Provincia Mizque. Licentiate, Universidad Mayor de San Simón.Google Scholar
McCarragher, S.R., Goldblum, D. and Rigg, L.S. (2011) Geographic variation of germination, growth, and mortality in sugar maple (Acer saccharum): Common garden and reciprocal dispersal experiments. Physical Geography 32, 121.CrossRefGoogle Scholar
Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A., Chmielewski, F.M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila, C., Donnelly, A., Filella, Y., Jatcza, K., Måge, F., Mestre, A., Nordli, O., Peñuelas, J., Pirinen, P., Remisová, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, A.J., Wielgolaski, F.E., Zach, S. and Zust, A. (2006) European phenological response to climate change matches the warming pattern. Global Change Biology 12, 19691976.CrossRefGoogle Scholar
Meyer, S.E. and Allen, P.S. (2009) Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models. Seed Science Research 19, 225239.CrossRefGoogle Scholar
Michel, B.E. (1983) Evaluation of the water potentials of solutions of polyethylene Glycol-8000 both in the absence and presence of other solutes. Plant Physiology 72, 6670.CrossRefGoogle ScholarPubMed
Navarro, G., Molina, J.A. and De la Barra, N. (2005) Classification of the high-Andean Polylepis forests in Bolivia. Plant Ecology 176, 113130.CrossRefGoogle Scholar
Porter, J.R. (2005) Rising temperatures are likely to reduce crop yields. Nature 436, 174.CrossRefGoogle ScholarPubMed
Qiu, J., Bai, Y., Fu, Y.B. and Wilmshurst, J.F. (2010) Spatial variation in temperature thresholds during seed germination of remnant Festuca hallii populations across the Canadian prairie. Environmental and Experimental Botany 67, 479486.CrossRefGoogle Scholar
Renison, D. and Cingolani, A.M. (1998) Experiencias en germinación y reproducción vegetativa aplicados a la reforestación con Polylepis australis (Rosaceae) en las Sierras Grandes de Córdoba, Argentina. Agriscientia XV, 4753.Google Scholar
Roman, E.S., Thomas, A.G., Murphy, S.D. and Swanton, C.J. (1999) Modeling germination and seedling elongation of common lambsquarters (Chenopodium album). Weed Science 47, 149155.CrossRefGoogle Scholar
SAS (2008) SAS v. 9.2. Cary, North Carolina, USA, SAS Institute Inc.Google Scholar
Simpson, B.B. (1979) A revision of the genus Polylepis (Rosaceae: Sanguisorbeae). Washington, Smithsonian Institution Press.CrossRefGoogle Scholar
Teketay, D. (2005) Seed and regeneration ecology in dry Afromontane forests of Ethiopia: I. Seed production – population structures. Tropical Ecology 46, 2944.Google Scholar
Thompson, K. and Grime, J.P. (1983) A comparative study of germination responses to diurnally-fluctuating temperatures. Journal of Applied Ecology 20, 141156.CrossRefGoogle Scholar
Thompson, K., Grime, J.P. and Mason, G. (1977) Seed-germination in response to diurnal fluctuations of temperature. Nature 267, 147149.CrossRefGoogle ScholarPubMed
Tielbörger, K.andValleriani, A. (2005) Can seeds predict their future? Germination strategies of density-regulated desert annuals. Oikos 111, 235244.CrossRefGoogle Scholar
Verdú, M. and Traveset, A. (2005) Early emergence enhances plant fitness: A phylogenetically controlled meta-analysis. Ecology 86, 13851394.CrossRefGoogle Scholar
Walck, J.L., Hidayati, S.N., Dixon, K.W., Thompson, K. and Poschlod, P. (2011) Climate change and plant regeneration from seed. Global Change Biology 17, 21452161.CrossRefGoogle Scholar
Wang, R., Bai, Y. and Tanino, K. (2004) Effect of seed size and sub-zero imbibition-temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). Environmental and Experimental Botany 51, 183197.CrossRefGoogle Scholar
Wei, Y., Bai, Y. and Henderson, D.C. (2009) Critical conditions for successful regeneration of an endangered annual plant, Cryptantha minima: A modeling approach. Journal of Arid Environments 73, 872875.CrossRefGoogle Scholar
Welbaum, G.E., Bradford, K.J., Yim, K.O., Booth, D.T. and Oluoch, M.O. (1998) Biophysical, physiological and biochemical processes regulating seed germination. Seed Science Research 8, 161172.CrossRefGoogle Scholar
Willis, S.G.andHulme, P.E. (2002) Does temperature limit the invasion of Impatiens glandulifera and Heracleum mantegazzianum in the UK? Functional Ecology 16, 530539.CrossRefGoogle Scholar
World Conservation Monitoring Center (1998) Polylepis besseri ssp. besseri. IUCN Red List of threatened species Version 2011.1. Available atwww.iucnredlist.org (accessed accessed 1 September 2011).Google Scholar
Zavaleta, E.S. (2006) Shrub establishment under experimental global changes in a California grassland. Plant Ecology 184, 5363.CrossRefGoogle Scholar