Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:31:37.308Z Has data issue: false hasContentIssue false

Intermediate complex morphophysiological dormancy in the endemic Iberian Aconitum napellus subsp. castellanum (Ranunculaceae)

Published online by Cambridge University Press:  23 February 2010

José M. Herranz
Affiliation:
E.T.S.I.A., Department of Plant Production and Agricultural Technology, University of Castilla-La Mancha, University Campus s/n, Albacete02071, Spain
Miguel Á. Copete*
Affiliation:
E.T.S.I.A., Department of Plant Production and Agricultural Technology, University of Castilla-La Mancha, University Campus s/n, Albacete02071, Spain
Pablo Ferrandis
Affiliation:
E.T.S.I.A., Department of Plant Production and Agricultural Technology, University of Castilla-La Mancha, University Campus s/n, Albacete02071, Spain
Elena Copete
Affiliation:
E.T.S.I.A., Department of Plant Production and Agricultural Technology, University of Castilla-La Mancha, University Campus s/n, Albacete02071, Spain
*
*Correspondence Fax: +34 967 599238 Email: miguel.copete@uclm.es

Abstract

Seeds of Aconitum napellus subsp. castellanum were physiologically dormant at maturity in early autumn, with underdeveloped embryos. Thus they have morphophysiological dormancy (MPD). Embryos in fresh seeds were on average 1.01 mm long, and they had to grow to 3.60 mm before radicle emergence. Cold stratification at 5°C for 5 months with light enhanced the mean embryo length to 2.73 mm (SE = 0.13) and seed germination to 20%. However, with higher temperatures (15/4, 20/7, 25/10, 28/14 and 32/18°C) embryo growth was small, with no seeds germinating. Optimal germination was achieved after 4 months of cold stratification at 5°C followed by incubation at 20/7°C for 1 month with light, when germination ranged between 70 and 79%, depending on seed age, locality and year of collection. Cold stratification could be substituted by the application of GA3 solution, since mean embryo length in seeds incubated at 25/10°C for 1 month with light was 3.52 mm and the germination was 80%. Since cold stratification was the only requirement for the loss of MPD, the longest embryo growth occurred during this treatment, and GA3 promoted MPD loss, we concluded that A. napellus seeds have intermediate complex MPD. Germination was higher in 4-month stored than in freshly matured seeds. A pronounced variability in germinative patterns at inter-annual and inter-population level was recorded.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizpuru, I. (Ed.) (2000) Lista roja de flora vascular española. Conservación Vegetal 6, 1138.Google Scholar
Albert, M.J., Iriondo, J.M. and Pérez-García, F. (2002) Effects of temperature and pretreatments on seed germination of nine semiarid species from NE Spain. Israel Journal of Plant Species 50, 103112.CrossRefGoogle Scholar
Andersson, L. and Milberg, P. (1998) Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Science Research 8, 2938.CrossRefGoogle Scholar
Bañares, A., Blanca, G., Güemes, J., Moreno, J.C. and Ortiz, S. (Eds) (2003) Atlas y libro rojo de la flora vascular amenazada de España. Madrid, Dirección General de Conservación de la Naturaleza.Google Scholar
Baskin, C.C. and Baskin, J.M. (1994) Deep complex morphophysiological dormancy in seeds of the mesic woodland herb Delphinium tricorne (Ranunculaceae). International Journal of Plant Sciences 155, 738743.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds. Ecology, biogeography, and evolution of dormancy and germination. San Diego, California, Academic Press.Google Scholar
Baskin, C.C. and Baskin, J.M. (2005) Seed dormancy in wild flowers. pp. 163–185 in McDonald, M.B.; Kwong, F.Y. (Eds) Flower seeds: biology and technology. Wallingford, CAB International.Google Scholar
Baskin, C.C., Chester, E.W. and Baskin, J.M. (1992) Deep complex morphophysiological dormancy in seeds of Thaspium pinnatifidum (Apiaceae). International Journal of Plant Sciences 153, 565571.CrossRefGoogle Scholar
Baskin, C.C., Meyer, S.E. and Baskin, J.M. (1995) Two types of morphophysiological dormancy in seeds of two genera (Osmorhiza and Erythronium) with an Arcto-Tertiary distribution pattern. American Journal of Botany 82, 293298.CrossRefGoogle Scholar
Baskin, C.C., Milberg, P., Andersson, L. and Baskin, J.M. (2000) Deep complex morphophysiological dormancy in seeds of Anthriscus sylvestris (Apiaceae). Flora 195, 245251.CrossRefGoogle Scholar
Baskin, C.C., Baskin, J.M. and Chester, E.W. (2001) Morphophysiological dormancy in seeds of Chamaelirium luteum, a long-lived dioecious lily. Journal of the Torrey Botanical Society 128, 715.CrossRefGoogle Scholar
Baskin, C.C., Chien, C.T., Chen, S.Y. and Baskin, J.M. (2008) Germination of Viburnum odoratissimum seeds: a new level of morphophysiological dormancy. Seed Science Research 18, 179184.CrossRefGoogle Scholar
Baskin, J.M. and Baskin, C.C. (1990) Germination ecophysiology of seeds of the winter annual Chaerophyllum tainturieri: a new type of morphophysiological dormancy. Journal of Ecology 78, 9931004.CrossRefGoogle Scholar
Beckstead, J., Meyer, S.E. and Allen, S. (1996) Bromus tectorum seeds germination: between-population and between-year variation. Canadian Journal of Botany 74, 875882.CrossRefGoogle Scholar
Copete, M.A., Herranz, J.M. and Ferrandis, P. (2005) Seed dormancy and germination in threatened Iberian Coincya (Brassicaceae) taxa. Écoscience 12, 257266.CrossRefGoogle Scholar
Cronquist, A. (1988) The evolution and classification of flowering plants (2nd edition). Bronx, New York, New York Botanical Garden.Google Scholar
Dosmann, M.S. (2002) Stratification improves and is likely required for germination of Aconitum sinomontanum. Horticultural Technology 12, 423425.Google Scholar
Escudero, A., Carnes, L.F. and Pérez-García, F. (1997) Seed germination of gypsophytes and gypsovags in semi-arid central Spain. Journal of Arid Environments 36, 487497.CrossRefGoogle Scholar
Fenner, M. (1991) The effects of the parent environment on seed germinability. Seed Science Research 1, 7584.CrossRefGoogle Scholar
Galmés, J., Medrano, H. and Flexas, J. (2006) Germination capacity and temperature dependence in Mediterranean species of the Balearic Islands. Investigación Agraria. Sistemas y Recursos Forestales 15, 8895.CrossRefGoogle Scholar
Giménez-Benavides, L., Escudero, A. and Pérez-García, F. (2005) Seed germination of high mountain Mediterranean species: altitudinal, interpopulation and interannual variability. Ecological Research 20, 433444.CrossRefGoogle Scholar
Gutterman, Y. (1992) Maternal effects on seeds during development. pp. 2759in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities. Wallingford, CAB International.Google Scholar
Herranz, J.M., Ferrandis, P., Copete, M.A. and Martínez-Sánchez, J.J. (2002) Influencia de la temperatura de incubación sobre la germinación de 23 endemismos vegetales ibéricos o iberoafricanos. Investigación Agraria. Producción y Protección Vegetales 17, 229245.Google Scholar
Hidayati, S.N., Baskin, J.M. and Baskin, C.C. (2000) Morphophysiological dormancy in seeds of two North American and one Eurasian species of Sambucus (Caprifoliaceae) with underdeveloped spatulate embryos. American Journal of Botany 87, 16691678.CrossRefGoogle ScholarPubMed
Kondo, T., Miura, T., Okubo, N., Shimada, M., Baskin, C.C. and Baskin, J.M. (2004) Ecophysiology of deep simple epicotyl morphophysiological dormancy in seeds of Gagea lutea (Liliaceae). Seed Science Research 14, 371378.CrossRefGoogle Scholar
Lentz, K.A. and Johnson, H.A. (1998) Factors affecting germination of endangered northeastern bulrush, Scirpus ancistrochaetus Schuyler (Cyperaceae). Seed Science and Technology 26, 733741.Google Scholar
Lorite, J., Ruiz-Girela, M. and Castro, J. (2007) Patterns of seed germination in Mediterranean mountains; study on 37 endemic or rare species from Sierra Nevada, SE Spain. Candollea 62, 516.Google Scholar
Martín, J., Cirujano, S., Peris, J.B. and Stübing, G. (2003) La vegetación protegida en Castilla-La Mancha. Toledo, Junta de Comunidades de Castilla-La Mancha.Google Scholar
Meyer, S.E. (1992) Habitat-correlated variation in firecracker penstemon (Penstemon eatonii: Scrophulariaceae) seed germination patterns. Bulletin of the Torrey Botanical Club 119, 268279.CrossRefGoogle Scholar
Molero, J. and Blanché, J. (1986) Aconitum. pp. 233242in Castroviejo, S.; Laínz, M.; López González, G.; Montserrat, P.; Muñoz Garmendia, F.; Paiva, J.; Villar, L. (Eds) Flora Iberica: plantas vasculares de la Península Ibérica e Islas Baleares, Vol. I, Madrid, Real Jardín Botánico, CSIC.Google Scholar
Moreno, J.C. (2008) Lista roja 2008 de la flora vascular española. Dirección General del Medio Natural y Política Forestal. Madrid, Ministerio de Medio Ambiente y Medio Rural y Marino.Google Scholar
Naylor, R.E.L. and Abdalla, A.F. (1982) Variation in germination behaviour. Seed Science and Technology 10, 6776.Google Scholar
Nikolaeva, M.G. (1977) Factors controlling the seed dormancy pattern. pp. 5174in Khan, A.A. (Ed.) The physiology and biochemistry of seed dormancy and germination. Amsterdam, North-Holland.Google Scholar
Pandey, K., Nandi, S.K., Nadeen, M. and Palni, L.M.S. (2000) Chemical stimulation of seed germination in Aconitum heterophyllum and A. balfourii: important Himalayan species of medicinal value. Seed Science and Technology 28, 3948.Google Scholar
Pegtel, D.M. (1985) Germination in populations of Solanum dulcamara L. from contrasting habitats. New Phytologist 100, 671679.CrossRefGoogle Scholar
Pérez-García, F., Iriondo, J.M., González-Benito, M.E., Carnes, L.F., Tapia, J., Prieto, C., Plaza, R. and Pérez, C. (1995) Germination studies in endemic plant species of the Iberian Peninsula. Israel Journal of Plant Sciences 43, 239247.CrossRefGoogle Scholar
Pérez-García, F., Hornero, J. and González-Benito, M.E. (2003) Inter-population variation in seed germination of five Labiatae Mediterranean shrubby species. Israel Journal of Plant Sciences 51, 117124.Google Scholar
Schütz, W. and Milberg, P. (1997) Seed dormancy in Carex canescens: regional differences and ecological consequences. Oikos 78, 420428.CrossRefGoogle Scholar
Schütz, W., Milberg, P. and Lamont, B.B. (2002) Seed dormancy, after-ripening and light requirements of four annual Asteraceae in south-western Australia. Annals of Botany 90, 707714.CrossRefGoogle ScholarPubMed
Stokes, P. (1953) The stimulation of growth by low temperature in embryos of Heracleum sphondylium L. Journal of Experimental Botany 4, 222234.CrossRefGoogle Scholar
Stokes, P. (1965) Temperature and seed dormancy. pp. 746803in Ruhland, W. (Ed.) Encyclopaedia of plant physiology, Vol. 15/2, New York, Springer-Verlag.Google Scholar
Thompson, K., Bakker, J.P. and Bekker, R. (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge, Cambridge University Press.Google Scholar
Vandelook, F., Bolle, N. and Van Assche, J.A. (2007) Seed dormancy and germination of the European Chaerophyllum temulum (Apiaceae), a member of a trans-atlantic genus. Annals of Botany 100, 233239.CrossRefGoogle ScholarPubMed
Vandelook, F., Lenaerts, J. and Van Assche, J.A. (2009) The role of temperature in post-dispersal embryo growth and dormancy break in seeds of Aconitum lycoctonum L. Flora 204, 536542.CrossRefGoogle Scholar
Walck, J.L., Baskin, C.C. and Baskin, J.M. (1999) Seeds of Thalictrum mirabile (Ranunculaceae) require cold stratification for loss of nondeep simple morphophysiological dormancy. Canadian Journal of Botany 77, 17691776.CrossRefGoogle Scholar
Walck, J.L., Hidayati, S.N. and Okagami, N. (2002) Seed germination ecophysiology of the Asian species Osmorhiza aristata (Apiaceae): comparison with its North American congeners and implications for evolution of types of dormancy. American Journal of Botany 89, 829835.CrossRefGoogle ScholarPubMed