Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T19:54:44.820Z Has data issue: false hasContentIssue false

Trajectory tracking of a mini four-rotor helicopter in dynamic environments - a linear algebra approach

Published online by Cambridge University Press:  25 April 2014

Claudio Rosales*
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Avda. San Martín (oeste) 1109, CP 5400, San Juan - Argentina
Daniel Gandolfo
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Avda. San Martín (oeste) 1109, CP 5400, San Juan - Argentina
Gustavo Scaglia
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Avda. San Martín (oeste) 1109, CP 5400, San Juan - Argentina
Mario Jordan
Affiliation:
Instituto Argentino de Oceanografía (IADO-CONICET) Florida 8000, Complejo CRIBABB, Edificio E1, Bahía Blanca B8000FWDArgentina
Ricardo Carelli
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Avda. San Martín (oeste) 1109, CP 5400, San Juan - Argentina
*
*Corresponding author. E-mail: crosales@inaut.unsj.edu.ar

Summary

This paper presents the design of a controller that allows a four-rotor helicopter to track a desired trajectory in 3D space. To this aim, a dynamic model obtained from Euler-Lagrange equations describes the robot. This model is represented by numerical methods, with which the control actions for the operation of the system are obtained. The proposed controller is simple and presents good performance in face of uncertainties in the model of the system to be controlled. Zero-convergence proof is included, and simulation results show a good performance of the control system.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Altug, E., Ostrowski, J.P. and Taylor, C., Quadrotor Control Using Dual Camera Visual Feedback,” IEEE International Conference on Robotics and Automation, volume 3 (Sep. 14–19, 2003) pp. 42944299.Google Scholar
2. Beckmann, E. D. and Borges, G. A., “Nonlinear Modeling, Identification and Control for a Simulated Miniature Helicopter,” IEEE Latin American Robotic Symposium, Natal, Rio Grande do Norte, Brazil (Oct. 29–30, 2008) pp. 5358.Google Scholar
3. Benallegue, A., Mokhtari, A. and Fridman, L., “Feedback Linearization and High Order Sliding Mode Observer for a Quadrotor Uav,” International Workshop on Variable Structure Systems, Alghero, Sardinia, Italy (Jun. 5–7, 2006) pp. 365372.Google Scholar
4. Bernard, M., Kondak, K., Meyer, N., Zhang, Y. and Hommel, G., “Elaborated Modeling and Control for an Autonomous Quad-Rotor,” 22nd International Bristol UAV Systems Conference, Bristol, UK (Apr. 16–18, 2007) pp. 27.110.Google Scholar
5. Bouabdallah, S., Murrieri, P. and Siegwart, R., “Design and Control of an Indoor Micro Quadrotor,” IEEE International Conference on Robotic and Automation, volume 5, New Orleans, LA, USA (Apr. 26–May 1, 2004) pp. 43934398.Google Scholar
6. Bouabdallah, S., Noth, A. and Siegwart, R., “Pid vs lq Control Techniques Applied to an Indoor Micro Quadrotor,” IEEE/RSJ International Conference on Intelligent Robots and Systems., volume 3 (April 26–May 1, 2004) pp. 24512456.Google Scholar
7. Castillo, P., Dzul, A. and Lozano, R., “Real-time stabilization and tracking of a four-rotor mini rotorcraft,” IEEE Trans. Control Syst. Technol. 12, 510516 (Jul. 2004).Google Scholar
8. Castillo, P., Lozano, R. and Dzul, A., Modelling and Control of Mini-Flying Machines (Springer, USA, 2005).Google Scholar
9. Castillo, P., Lozano, R. and Dzul, A., “Stabilization of a mini rotorcraft with four rotors,” IEEE Control Syst. Mag. 25 (6), 4555 (Dec. 2005).Google Scholar
10. Das, A., Lewis, F. and Subbarao, K., “Backstepping approach for controlling a quadrotor using lagrange form dynamics,” J. Intell. Robot. Syst. 56 (1), 127151 (2009).Google Scholar
11. Derafa, L., Madani, T. and Benallegue, A., “Dynamic Modelling and Experimental Identification of Four Rotors Helicopter Parameters,” IEEE International Conference on Industrial Technology, Mumbai, India (Dec. 15–17, 2006) pp. 18341839.Google Scholar
12. Eisenbeiss, H., “A Mini Unmanned Aerial Vehicle (Uav): System Overview and Image Acquisition,” International Workshop on Processing and Visualization Using High-Resolution Imagery, volume 36, Pitsanulok, Thailand, (Nov. 18–20, 2004) pp. 17.Google Scholar
13. Hsieh, M. A., Cowley, A., Keller, J. F., Chaimowicz, L., Grocholsky, B., Kumar, V., Taylor, C. J., Endo, Y., Arkin, Ronald C., Jung, B., Wolf, D. F., Sukhatme, G. S. and MacKenzie, D. C., “Adaptive teams of autonomous aerial and ground robots for situational awareness,” J. Field Robot. 24 (11–12), 9911014 (2007).Google Scholar
14. Kendoul, F., Yu, Z. and Nonami, K., “Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles,” J. Field Robot. 27 (3), 311334 (2010).Google Scholar
15. Kondak, K., Bernard, M., Meyer, N. and Hommel, G., “Autonomously Flying Vtol-Robots: Modeling and Control,” IEEE International Conference on Robotics and Automation, Rome, Italy (Apr. 10–14, 2007) pp. 736741.Google Scholar
16. Ma, L. and Chen, Y., Aerial Surveillance System for Overhead Power Line Inspection, (Technical report, Center for Self-Organizing and Intelligent Systems (CSOIS) Department of Electrical and Computer Engineering College of Engineering, Utah State Universtiy USA, 2004).Google Scholar
17. Madani, T. and Benallegue, A., “Control of a Quadrotor Mini-Helicopter Via Full State Backstepping Technique,” 45th IEEE Conference on Decision and Control, San Diego, CA, USA (Dec. 13–15, 2006) pp. 15151520.Google Scholar
18. Maza, I., Caballero, F., Capitán, J., de Dios, J. Martínez and Ollero, A., “Experimental results in multi-uav coordination for disaster management and civil security applications,” J. Intell. Robot. Syst. 64 (1–4), 563585 (Dec. 2010).Google Scholar
19. Michael, N., Kink, J. and Kumar, V., “Coopertative manipulation and transportation with aereal robots,” Autonumous Robots 30 (1), 7386 (Sep. 2010).Google Scholar
20. Pounds, P., Gresham, J., Corke, P. and Roberts, J., “Towards Dynamically-Favourable Quad-Rotor Aerial Robots,” Australasian Conference on Robotics and Automation, Canberra, Australia (Dec. 6–8, 2004).Google Scholar
21. Pounds, P., Mahony, R. and Corke, P., “Modelling and Control of a Quad-Rotor Robot,” Australasian Conference on Robotics and Automation, Auckland, New Zealand (Dec. 6–8, 2006).Google Scholar
22. Raffo, G. V., Ortega, M. G. and Rubio, F. R., “An integral predictive/nonlinear $\mathcal{H}_{\infty}$ control structure for a quadrotor helicopter,” Automatica 46, 2939 (2010).Google Scholar
23. Rosales, A., Scaglia, G. and di Sciascio, F., “Formation control and trajectory tracking of mobile robotic systems - a linear algebra approach,” Robotica 29, 335349 (2011).Google Scholar
24. Rosales, A., Scaglia, G., Mut, V. and di Sciascio, F., “Trajectory tracking of mobile robots in dynamic environments - a linear algebra approach,” Robotica 27, 981997 (2009).Google Scholar
25. Scaglia, G., Quintero Montoya, L., Mut, V. and di Sciascio, F., “Numerical methods based controller design for mobile robots,” Robotica 27, 269279 (2009).Google Scholar
26. Scaglia, G., Rosales, A., Quintero, L., Mut, V. and Agarwal, R., “A linear-interpolation-based controller design for trajectory tracking of mobile robots,” Control Eng. Pract. 18, 318329 (2010).Google Scholar
27. Schafroth, D., Bermes, C., Bouabdallah, S. and Siegwart, R., “Modeling, system identification and robust control of a coaxial micro helicopter,” Control Eng. Pract. 18 (7), 700711 (Jul. 2010).Google Scholar
28. Strang, G., Linear Algebra and its Application (Academic Press., San Francisco, CA, USA, 1980).Google Scholar
29. Voos, H., “Nonlinear Control of a Quadrotor Micro-Uav using Feedback-Linearization,” IEEE International Conference on Mechatronics (May 14–17, 2009) pp. 1–6.Google Scholar
30. Waslander, S. L., Hoffmann, G., Jang, J. S. and Tomlin, C. J., “Multi-Agent x4-Flyer Testbed Design: Integral Sliding Mode vs. Reinforcement Learning,” IEEE/RSJ International Intelligent Robots and Systems (IROS 2005), Edmonton, AB, Canada (Aug. 2–6, 2005) pp. 60856090.Google Scholar