Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T04:36:14.713Z Has data issue: false hasContentIssue false

Sub-optimal trajectory planning for mobile manipulators

Published online by Cambridge University Press:  01 April 2014

Grzegorz Pajak*
Affiliation:
University of Zielona Góra, Zielona Góra, Poland
Iwona Pajak
Affiliation:
University of Zielona Góra, Zielona Góra, Poland
*
*Corresponding author. E-mail: g.pajak@iizp.uz.zgora.pl

Summary

This paper presents a method of planning a sub-optimal trajectory for a mobile manipulator subject to mechanical and control constraints. The path of the end-effector is defined as a curve that can be parameterised by any scaling parameter—the reference trajectory of a mobile platform is not needed. Constraints connected with the existence of mechanical limits for a given manipulator configuration, collision avoidance conditions and control constraints are considered. Nonholonomic constraints in a Pfaffian form are explicitly incorporated to the control algorithm. To avoid manipulator singularities, the motion of the robot is planned in order to maximise the manipulability measure.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bayle, B., Fourquet, J. Y. and Renaud, M., “A Coordination Strategy for Mobile Manipulation,” Proceedings of the 6th International Conference on Intelligent Autonomous Systems (IAS-6), Venice, Italy (2000) pp. 981988.Google Scholar
2. Bayle, B., Fourquet, J. Y. and Renaud, M., “Manipulability of wheeled mobile manipulation: Application to motion generation,” Int. J. Robot. Res. 22 (7–8), 565581 (2003).Google Scholar
3. Fruchard, M., Morin, P. and Samson, C., “A framework for the control of nonholonomic mobile manipulators,” Int. J. Robot. Res. 25 (8), 745780 (2006).Google Scholar
4. Seraji, H., “A unified approach to motion control of mobile manipulators,” Int. J. Robot. Res. 17 (2), 107118 (1998).Google Scholar
5. Tchoń, K. and Jakubiak, J., “Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms,” Int. J. Control 76, 13871419 (2003).Google Scholar
6. Galicki, M., “Inverse kinematics solution to mobile manipulators,” Int. J. Robot. Res. 22 (12), 10411064 (2003).Google Scholar
7. Galicki, M., “Control-based solution to inverse kinematics for mobile manipulators using penalty functions,” J. Intell. Robot. Syst. 42 (3), 213238 (2005).Google Scholar
8. Yamamoto, Y. and Yun, X., “Effect of the dynamic interaction on coordinated control of mobile manipulators,” IEEE Trans. Robot. Autom. 12 (5), 816824 (1996).Google Scholar
9. Tan, J., Xi, N. and Wang, Y., “Integrated task planning and control for mobile manipulators,” Int. J. Robot. Res. 22 (5), 337354 (2003).Google Scholar
10. Desai, J. and Kumar, V., “Nonholonomic Motion Planning for Multiple Mobile Manipulators,” Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, vol. 4 (Apr. 20–25, 1997) pp. 34093414.Google Scholar
11. Mohri, A., Furuno, S., Iwamura, M. and Yamamoto, M., “Sub-Optimal Trajectory Planning of Mobile Manipulator,” Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea (May 21–26, 2001) pp. 12711276.Google Scholar
12. Mazur, A., “Trajectory tracking control in workspace-defined tasks for nonholonomic mobile manipulators,” Robotica 28, 5768 (2010).Google Scholar
13. Galicki, M., “Task space control of mobile manipulators,” Robotica 29, 221232 (2011).Google Scholar
14. Galicki, M., “Collision-free control of mobile manipulators in a task space,” Mech. Syst. Signal Pr. 25 (7), 27662784 (2011).Google Scholar
15. Egerstedt, M. and Hu, X., “Coordinated Trajectory Following for Mobile Manipulation,” Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, vol. 4 (Apr. 24–28, 2000) pp. 34793484.Google Scholar
16. Chung, J., Velinsky, S. and Hess, R., “Interaction control of a redundant mobile manipulator,” Int. J. Robot. Res. 17 (12), 13021309 (1998).Google Scholar
17. Liu, K. and Lewis, F. L., “Control of Mobile Robot with Onboard Manipulator,” Proceedings of the International Symposium on Robotics and Manufacturing, Santa Fe, NM, USA (Nov. 11–13, 1992) pp. 539546.Google Scholar
18. Mazur, A., “Path Following for Nonholonomic Mobile Manipulators,” 6th International Workshop on Robot Motion and Control, Bukowy Dworek, Poland, LNCIS 360 (Jun. 11–13, 2007) pp. 279292.Google Scholar
19. An, C. H., Atkeson, C. G. and Hollerbach, J. M., Model-Based Control of a Robot Manipulator (The MIT Press, Massachusetts, 1988).Google Scholar
20. Renders, J. M., Rossignol, E., Becquet, M. and Hanus, R., “Kinematic calibration and geometrical parameter identification for robots,” IEEE Trans. Robot. Autom. 7 (6), 721731 (1991).Google Scholar
21. Galicki, M., “Two-stage constrained control of mobile manipulators,” Mech. Mach. Theory 54, 1840 (2012).Google Scholar
22. Pajak, G. and Pajak, I., “Planning of an Optimal Collision-Free Trajectory Subject to Control Constraints,” Proceedings of the 2nd International Workshop on Robot Motion and Control, Bukowy Dworek, Poland (Oct. 18–20, 2001) pp. 141146.Google Scholar
23. Pajak, G., Pajak, I. and Galicki, M., “Trajectory Planning of Multiple Manipulators,” Proceedings of the 4th International Workshop on Robot Motion and Control, Puszczykowo, Poland (Jun. 17–20, 2004) pp. 121126.Google Scholar
24. Pajak, I. and Galicki, M., “The Planning of Suboptimal Collision-Free Robotic Motions,” Proceedings of the 1st International Workshop on Robot Motion and Control, Kiekrz, Poland (Jun. 28–29, 1999) pp. 229243.Google Scholar
25. Yoshikawa, T., “Manipulability of robotic mechanisms,” Int. J. Robot. Res. 4 (2), 39 (1985).Google Scholar
26. Fiacco, A. V. and McCormick, G. P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques (John Wiley & Sons, New York, 1968).Google Scholar
27. Findeisen, W., Szymanowski, J. and Wierzbicki, A., Theory and Methods of Optimization (in Polish) (Polish Scientific Publisher, Warsaw, Poland, 1977).Google Scholar
28. Galicki, M., “The planning of robotic optimal motions in the presence of obstacles,” Int. J. Robot. Res. 17 (3), 248259 (1998).Google Scholar
29. Pajak, G. and Galicki, M., “Collision-Free Trajectory Planning of the Redundant Manipulators,” Proceedings of the Methods and Models in Automation and Robotics, Miedzyzdroje, Poland (Aug. 28–31, 2000) pp. 605610.Google Scholar
30. Pajak, G. and Pajak, I., “Sub-optimal trajectory planning of the redundant manipulators,” Int. J. Appl. Mech. Eng. 14 (1), 251260 (2009).Google Scholar