Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T15:43:23.283Z Has data issue: false hasContentIssue false

State of the art and future trends in obstacle-surmounting unmanned ground vehicle configuration and dynamics

Published online by Cambridge University Press:  04 May 2023

Miaolei He
Affiliation:
College of Engineering and Design, Hunan Normal University, Changsha 410081, China
Xiangdi Yue
Affiliation:
College of Engineering and Design, Hunan Normal University, Changsha 410081, China
Yuling Zheng
Affiliation:
College of Engineering and Design, Hunan Normal University, Changsha 410081, China
Junxin Chen
Affiliation:
College of Engineering and Design, Hunan Normal University, Changsha 410081, China
Shuangqing Wu
Affiliation:
College of Engineering and Design, Hunan Normal University, Changsha 410081, China
Zeng Heng
Affiliation:
College of Engineering and Design, Hunan Normal University, Changsha 410081, China
Xuanyi Zhou
Affiliation:
Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310000, China
Yaoyi Cai*
Affiliation:
College of Engineering and Design, Hunan Normal University, Changsha 410081, China
*
Corresponding author: Yaoyi Cai; Email: cyy@hunnu.edu.cn

Abstract

This article presents a review of the platform configuration and dynamic of obstacle-surmounting unmanned ground vehicles (UGVs). For now, unmanned systems have emerged as a result of the rapid advancement of artificial intelligence and modern manufacturing techniques both domestically and internationally. The research on unmanned systems has been improved a lot. The UGV platform can execute transportation, recurring, and military tasks independently. For the high-level self-control, adaption, and maneuverability abilities, the UGV platform has been applied in the military, industry, and other special fields widely. The UGV platform usually performs tasks in an unstructured environment, so the all-terrain performance becomes a key factor restricting their operating efficiency and reliability. A brief literature review of the UGV platform is carried out in this article.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zaparii, V., Mel’nikov, N., Gizhevskii, B. and Zaparii, V. V., “Soviet metallurgy contribution to the creation and serial production of the kliment voroshilov (kv) soviet heavy tank (1939-1941),” Steel Transl. 51(9), 593599 (2021).CrossRefGoogle Scholar
Villar, V., “Unmanned Ground Systems in Future Warfare,” In: Digital Infantry Battlefield Solution (Milrem Robotics, Tallinn, 2016) pp. 23.Google Scholar
Nilsson, N. J., “Shakey the robot,” Technical Report 323 (AI Center, SRI International, Menlo Park, CA, USA, 1984).Google Scholar
Leighty, R. D., “Darpa alv (autonomous land vehicle) summary,” Tech. Rep. (Army Engineer Topographic Labs, Fort Belvoir, VA, 1986).Google Scholar
Sabatta, D., “Intelligent autonomous systems,” Technical Report (Army Technology Work Session, Council of Scientific & Industrial Research, South Africa, 2012).Google Scholar
Ni, J., Hu, J. and Xiang, C., “A review for design and dynamics control of unmanned ground vehicle,” Proc. Inst. Mech. Eng. D: J. Automob. Eng. 235(4), 10841100 (2021).CrossRefGoogle Scholar
Nevliudov, I., Yanushkevych, D. and Ivanov, L., “Analysis of the state of creation of robotic complexes for humanitarian demining,” Technol. Audit Production Reserves 6(2), 62 (2021).CrossRefGoogle Scholar
Ieva Bērziņa, G.d. B., Digital Infantry Battlefield Solution:Research and Innovation, vol. 3 (Milrem Robotics, Helsinki, 2019).Google Scholar
Lee, K., Ryu, S., Kim, C. and Seo, T., “A compact and agile angled-spoke wheel-based mobile robot for uneven and granular terrains,” IEEE Robot. Autom. Lett. 7(2), 16201626 (2022).CrossRefGoogle Scholar
Chen, Y., Wang, D., Zhong, H., Zhu, Y., Yang, J. and Wang, C., “Design and motion analysis of a mobile robot based on linkage suspension,” J. Adv. Comput. Intel. Intel. Inform. 26(3), 355366 (2022).CrossRefGoogle Scholar
Tan, A. H., Peiris, M., El-Gindy, M. and Lang, H., “Design and development of a novel autonomous scaled multiwheeled vehicle,” Robotica 40(5), 14751500 (2022).CrossRefGoogle Scholar
Gonzalez, D. J., Lesak, M. C., Rodriguez, A. H., Cymerman, J. A. and Korpela, C. M., “ Dynamics and aerial attitude control for rapid emergency deployment of the agile ground robot agro,” In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 2577–2584.CrossRefGoogle Scholar
Nikitenko, A. and Kulikovskis, G., “Eight Wheel Robotic Platform and Its Fuzzy Control System,” In: International Conference on Automation, Robotics and Control Systems (2010).Google Scholar
Son, D., Shin, J., Kim, Y. and Seo, T., “Levo: Mobile robotic platform using wheel-mode switching primitives,” Int. J. Precis. Eng. Manuf. 23(11), 110 (2022).CrossRefGoogle Scholar
Martinez-Garcia, E. A., Lerín-García, E. and Torres-Cordoba, R., “A multi-configuration kinematic model for active drive/steer four-wheel robot structures,” Robotica 34(10), 23092329 (2016).CrossRefGoogle Scholar
Jia, J., Cheng, P., Ye, Y., Xie, Q. and Wu, C., “A novel soft-rigid wheeled crawling robot with high payload and passing capability,” Robotica 40(11), 122 (2022).CrossRefGoogle Scholar
Kim, Y., Lee, Y., Lee, S., Kim, J., Kim, H. S. and Seo, T., “Step: A new mobile platform with 2-dof transformable wheels for service robots,” IEEE/ASME Trans. Mechatron. 25(4), 18591868 (2020).CrossRefGoogle Scholar
Wong, J. Y., Theory of Ground Vehicles (John Wiley & Sons, Hoboken, 2022).CrossRefGoogle Scholar
J.González, R., War Virtually: The Quest to Automate Conflict, Militarize Data, and Predict the Future (University of California, 2022).Google Scholar
Williams, A. J., A Robotic Head Stabilization Device for Post-Trauma Transport, Ph.D. Thesis (Virginia Polytechnic Institute, 2018).Google Scholar
Zhang, F., Fan, H., Wang, K., Zhao, Y., Zhang, X. and Ma, Y., “Research on intelligent target recognition integrated with knowledge,” IEEE Access 9, 137107137115 (2021). doi: 10.1109/ACCESS.2021.3116866 CrossRefGoogle Scholar
Yamauchi, B. M., “Packbot: A Versatile Platform for Military Robotics,” In: Unmanned Ground Vehicle Technology VI, vol. 5422 (SPIE, 2004) pp. 228237.CrossRefGoogle Scholar
Mourikis, A. I., Trawny, N., Roumeliotis, S. I., Helmick, D. M. and Matthies, L., “Autonomous stair climbing for tracked vehicles,” Int. J. Robot. Res. 26(7), 737758 (2007).CrossRefGoogle Scholar
Yunwang, L., Shirong, G., Hua, Z. and Jian, L., “Obstacle-surmounting mechanism and capability of four-track robot with two swing arms,” Robot 32(2), 157165 (2010).Google Scholar
Yuting, Z., Baoling, H., Qingsheng, L. and Kailing, L., “Design and Implementation of Four-Link Robot Crawler with Variable Structure,” In: IOP Conference Series: Materials Science and Engineering, vol. 428 (IOP Publishing, 2018) pp. 012060.Google Scholar
Cui, D., Gao, X., Guo, W. and Dong, H., “Design and Stability Analysis of a Wheel-Track Robot,” In: 2016 3rd International Conference on Information Science and Control Engineering (ICISCE) (IEEE, 2016) pp. 918922.CrossRefGoogle Scholar
Hardouin, L., “Variable Geometry Ttracked Vehicle (VGTV) Prototype: Conception, Capability and Problems,” In: Proc. Humans Operating Unmanned Systems (HUMOUS) Conf., Brest (2008) pp. 115126.Google Scholar
Ko, C.-C., Chen, S.-C., Li, C.-H. and Lin, P.-C., “Trajectory Planning and Four-Leg Coordination for Stair Climbing in a Quadruped Robot,” In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2010) pp. 53355340.Google Scholar
Nicholson, J., Jasper, J., Kourchians, A., McCutcheon, G., Austin, M., Gonzalez, M., Pusey, J., Karumanchi, S., Hubicki, C. and Clark, J., “Llama: Design and Control of an Omnidirectional Human Mission Scale Quadrupedal Robot,” In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 39513958.CrossRefGoogle Scholar
Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., Hwangbo, J., Bodie, K., Fankhauser, P., Bloesch, M., R. Diethelm, S. Bachmann, A. Melzer and M. Hoepflinger, “Anymal-A Highly Mobile and Dynamic Quadrupedal Robot,” In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016) pp. 3844.CrossRefGoogle Scholar
Nelson, G., Saunders, A. and Playter, R., “The petman and atlas robots at boston dynamics,” In Humanoid Robotics: A Reference, (A. Goswami and P. Vadakkepat, eds.) (Springer Netherlands, Dordrecht, 2019) pp. 169186. doi: 10.1007/978-94-007-6046-2_15 CrossRefGoogle Scholar
Park, H.-W., Wensing, P. M. and Kim, S., “High-speed bounding with the mit cheetah 2: Control design and experiments,” Int. J. Robot. Res. 36(2), 167192 (2017).CrossRefGoogle Scholar
Goldschmidt, D., Hesse, F., Wörgötter, F. and Manoonpong, P., “Biologically Inspired Reactive Climbing Behavior of Hexapod Robots,” In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012).CrossRefGoogle Scholar
Xiong, X. and Ames, A. D., “Bipedal Hopping: Reduced-Order Model Embedding via Optimization-Based Control,” In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2018) pp. 38213828.CrossRefGoogle Scholar
Ficht, G. and Behnke, S., “Bipedal humanoid hardware design: A technology review,” Curr. Robot. Rep. 2(2), 201210 (2021).CrossRefGoogle Scholar
Liu, Y., Shen, J., Zhang, J., Zhang, X., Zhu, T. and Hong, D., “Design and Control of a Miniature Bipedal Robot with Proprioceptive Actuation for Dynamic Behaviors,” In: 2022 International Conference on Robotics and Automation (ICRA) (IEEE, 2022) pp. 85478553.CrossRefGoogle Scholar
Yöngül, A. and Kavlak, K., “Design of Mobile Robot with Klann Walking Mechanism to Overcome the Set and Step Type Obstacle,” In: 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (IEEE, 2022) pp. 15.Google Scholar
Kavlak, K. and Kartal, İ.A., “Design of Mobile Robot with Strandbeest Walking Mechanism to Overcome the Set Type Obstacle,” In: 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (IEEE, 2021) pp. 14.Google Scholar
Huang, J.-K. and Grizzle, J. W., “Efficient anytime clf reactive planning system for a bipedal robot on undulating terrain,” arXiv preprint arXiv:2108.06699 (2021).Google Scholar
Blackman, D. J., Nicholson, J. V., Ordonez, C., Miller, B. D. and Clark, J. E., “Gait Development on Minitaur, a Direct Drive Quadrupedal Robot,” In: Unmanned Systems Technology XVIII, vol. 9837 (SPIE, 2016) pp. 141155.Google Scholar
Kiss, B., Gonen, E. C., Mo, A., Buchmann, A., Renjewski, D. and Badri-Spröwitz, A., “Gastrocnemius and power amplifier soleus spring-tendons achieve fast human-like walking in a bipedal robot,” arXiv preprint arXiv:2203.01588v2 (2022).Google Scholar
Roennau, A., Heppner, G., Nowicki, M. and Dillmann, R., “Lauron v: A Versatile Six-Legged Walking Robot with Advanced Maneuverability,” In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014) pp. 8287.CrossRefGoogle Scholar
Katz, B., Di Carlo, J. and Kim, S., “Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control,” In: 2019 International Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp. 62956301.CrossRefGoogle Scholar
Ding, Y., Pandala, A., Li, C., Shin, Y.-H. and Park, H.-W., “Representation-free model predictive control for dynamic motions in quadrupeds,” IEEE Trans. Robot. 37(4), 11541171 (2021).CrossRefGoogle Scholar
Dettmann, A., Planthaber, S., Bargsten, V., Dominguez, R., Cerilli, G., Marchitto, M., Fink, G., Focchi, M., Barasuol, V., Semini, C. and Marc, R., “Towards a Generic Navigation and Locomotion Control System for Legged Space Exploration,” In: 16th Symposium on Advanced Space Technologies in Robotics and Automation (2022).Google Scholar
Kolvenbach, H., Hampp, E., Barton, P., Zenkl, R. and Hutter, M., “Towards Jumping Locomotion for Quadruped Robots on the Moon,” In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2019) pp. 54595466.CrossRefGoogle Scholar
Kolvenbach, H., Arm, P., Hampp, E., Dietsche, A., Bickel, V., Sun, B., Meyer, C. and Hutter, M., “Traversing steep and granular martian analog slopes with a dynamic quadrupedal robot,” arXiv preprint arXiv:2106.01974 (2021).Google Scholar
Conduraru, A., Doroftei, I. and Conduraru, I., “An overview on the design of mobile robots with hybrid locomotion,” Adv. Mater. Res. 837, 555560 (2014). doi: 10.4028/www.scientific.net/AMR.837.555 CrossRefGoogle Scholar
Siegwart, R., Lamon, P., Estier, T., Lauria, M. and Piguet, R., “Innovative design for wheeled locomotion in rough terrain,” Robot. Auton. Syst. 40(2-3), 151162 (2002).CrossRefGoogle Scholar
Wang, S., Cui, L., Zhang, J., Lai, J., Zhang, D., Chen, K., Zheng, Y., Zhang, Z. and Jiang, Z.-P., “Balance Control of a Novel Wheel-Legged Robot: Design and Experiments,” In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2021) pp. 67826788.CrossRefGoogle Scholar
“Swiss-Mile: Advanced mobility and autonomy for self-evolving digital twins, infrastructure monitoring and logistics,” Switzerland. https://www.swiss-mile.com/.Google Scholar
Guo, W., Qiu, J., Xu, X. and Wu, J., “Talbot: A track-leg transformable robot,” Sensors 22(4), 1470 (2022).CrossRefGoogle Scholar
Miaolei, H., He, J., Ren, C. and He, Q., “A Horse Inspired Eight-Wheel Unmanned Ground Vehicle with Four-Swing Arms,” In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 77237728.Google Scholar
Klemm, V., Morra, A., Salzmann, C., Tschopp, F., Bodie, K., Gulich, L., Küng, N., Mannhart, D., Pfister, C., Vierneisel, M., Weber, F., Deuber, R. and Siegwart, R., “Ascento: A Two-Wheeled Jumping Robot,” In: 2019 International Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp. 75157521.CrossRefGoogle Scholar
He, M., Ren, C., He, J., Wu, K., Zhao, Y., Wang, Z. and Wu, C., “Design, analysis and experiment of an eight-wheel robotic vehicle with four-swing arms,” Ind. Robot 46(5), 682691 (2019).CrossRefGoogle Scholar
Lim, K., Ryu, S., Won, J. H. and Seo, T., “A modified rocker-bogie mechanism with fewer actuators and high mobility,” IEEE Robot. Autom. Lett. 7(4), 87528758 (2022).CrossRefGoogle Scholar
Choi, D., Kim, Y., Jung, S., Kim, J. and Kim, H. S., “A new mobile platform (RHyMo) for smooth movement on rugged terrain,” IEEE/ASME Trans. Mechatron. 21(3), 13031314 (2016).CrossRefGoogle Scholar
Siravuru, A., Shah, S. V. and Krishna, K. M., “An optimal wheel-torque control on a compliant modular robot for wheel-slip minimization,” Robotica 35(2), 463482 (2017).CrossRefGoogle Scholar
Klamt, T. and Behnke, S., “Anytime Hybrid Driving-Stepping Locomotion Planning,” In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017) pp. 44444451.CrossRefGoogle Scholar
Raza, F., Zhu, W. and Hayashibe, M., “Balance stability augmentation for wheel-legged biped robot through arm acceleration control,” IEEE Access 9, 5402254031 (2021). doi: 10.1109/ACCESS.2021.3071055 CrossRefGoogle Scholar
Jelavic, E., Farshidian, F. and Hutter, M., “Combined Sampling and Optimization Based Planning for Legged-Wheeled Robots,” In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2021) pp. 83668372.CrossRefGoogle Scholar
Zafar, M., Hutchinson, S. and Theodorou, E. A., “Hierarchical Optimization for Whole-Body Control of Wheeled Inverted Pendulum Humanoids,” In: 2019 International Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp. 75357542.CrossRefGoogle Scholar
Klemm, V., Morra, A., Gulich, L., Mannhart, D., Rohr, D., Kamel, M., de Viragh, Y. and Siegwart, R., “LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops,” IEEE Robot. Autom. Lett. 5(2), 37453752 (2020).CrossRefGoogle Scholar
Sun, Z., Zhang, D., Li, Z., Shi, Y. and Wang, N., “Optimum design and trafficability analysis for an articulated wheel-legged forestry chassis,” J. Mech. Des. 144(1), (2022).CrossRefGoogle Scholar
Kameduła, M. and Tsagarakis, N. G., “Reactive support polygon adaptation for the hybrid legged-wheeled centauro robot,” IEEE Robot. Autom. Lett. 5(2), 17341741 (2020).CrossRefGoogle Scholar
Bjelonic, M., Sankar, P. K., Bellicoso, C. D., Vallery, H. and Hutter, M., “Rolling in the deep–hybrid locomotion for wheeled-legged robots using online trajectory optimization,” IEEE Robot. Autom. Lett. 5(2), 36263633 (2020).CrossRefGoogle Scholar
Xin, Y., Chai, H., Li, Y., Rong, X., Li, B. and Li, Y., “Speed and acceleration control for a two wheel-leg robot based on distributed dynamic model and whole-body control,” IEEE Access 7, 180630180639 (2019). doi: 10.1109/ACCESS.2019.2959333 CrossRefGoogle Scholar
Pico, N., Park, S.-H., Luong, T., Medrano, J. and Moon, H., “Terrain Recognition Based on the Wheel Contact Angle Measurement Using Laser Scanners for Six-Wheel Mobile Robot,” In: 2022 19th International Conference on Ubiquitous Robots (UR) (IEEE, 2022) pp. 2329.CrossRefGoogle Scholar
Sun, J., You, Y., Zhao, X., Adiwahono, A. H. and Chew, C. M., “Towards more possibilities: Motion planning and control for hybrid locomotion of wheeled-legged robots,” IEEE Robot. Autom. Lett. 5(2), 37233730 (2020).CrossRefGoogle Scholar
Medeiros, V. S., Jelavic, E., Bjelonic, M., Siegwart, R., Meggiolaro, M. A. and Hutter, M., “Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain,” IEEE Robot. Autom. Lett. 5(3), 41724179 (2020).CrossRefGoogle Scholar
de Viragh, Y., Bjelonic, M., Bellicoso, C. D., Jenelten, F. and Hutter, M., “Trajectory optimization for wheeled-legged quadrupedal robots using linearized zmp constraints,” IEEE Robot. Autom. Lett. 4(2), 16331640 (2019).CrossRefGoogle Scholar
Du, W., Fnadi, M. and Benamar, F., “Whole-body motion tracking for a quadruped-on-wheel robot via a compact-form controller with improved prioritized optimization,” IEEE Robot. Autom. Lett. 5(2), 516523 (2020).CrossRefGoogle Scholar
Lucet, E., Grand, C., Sallé, D. and Bidaud, P., “Dynamic Yaw and Velocity Control of the 6WD Skid-Steering Mobile Robot RobuROC6 Using Sliding Mode Technique,” In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2009) pp. 42204225.Google Scholar
Zhou, X., He, J., Ren, C., Zhao, Y. and Peng, C., “Research on Obstacle Surmounting Performance of All-Terrain Eight Wheel Drive Robot,” In: 2018 Chinese Automation Congress (CAC) (IEEE, 2018) pp. 38683873.CrossRefGoogle Scholar
Li, N., Wang, M., Ma, S., Li, B. and Wang, Y., “Online stair-climbing control based on the combined motion planning of transformable tracked robot,” Jixie Gongcheng Xuebao(Chin. J. Mech. Eng.) 48(1), 4756 (2012).CrossRefGoogle Scholar
Wang, W., Yu, W. and Zhang, H., “Jl-2: A mobile multi-robot system with docking and manipulating capabilities,” Int. J. Adv. Robot. Syst. 7(1), 9 (2010).CrossRefGoogle Scholar
Takita, Y., Shimoi, N. and Date, H., “Development of a Wheeled Mobile Robot “Octal Wheel” Realized Cimbing Up and Down Stairs,” In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3 (IEEE, 2004) pp. 24402445.CrossRefGoogle Scholar
Thueer, T., Krebs, A. and Siegwart, R., “Comprehensive Locomotion Performance Evaluation of All-Terrain Robots,” In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2006) pp. 42604265.CrossRefGoogle Scholar
Alamdari, A. and Krovi, V., “Active Reconfiguration for Performance Enhancement in Articulated Wheeled Vehicles,” In: Dynamic Systems and Control Conference, vol. 46193 (American Society of Mechanical Engineers, New York, 2014) pp. V002T27A004.Google Scholar
She, Y., Hurd, C. J. and Su, H.-J., “A Transformable Wheel Robot with a Passive Leg,” In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015) pp. 41654170.Google Scholar
Sun, T., Xiang, X., Su, W., Wu, H. and Song, Y., “A transformable wheel-legged mobile robot: Design, analysis and experiment,” Robot. Auton. Syst. 98, 3041 (2017). doi: 10.1016/j.robot.2017.09.008 CrossRefGoogle Scholar
Lee, K.-M., Kim, Y., Paik, J. K. and Shin, B., “Clawed miniature inchworm robot driven by electromagnetic oscillatory actuator,” J. Bionic Eng. 12(4), 519526 (2015).CrossRefGoogle Scholar
Pijuan, J., Comellas, M., Nogués, M., Roca, J. and Potau, X., “Active bogies and chassis levelling for a vehicle operating in rough terrain,” J. Terramech. 49(3-4), 161171 (2012).CrossRefGoogle Scholar
Wang, W., Du, Z. and Sun, L., “Kinematics Analysis for Obstacle-Climbing Performance of a Rescue Robot,” In: 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2007) pp. 16121617.Google Scholar
Yao, D., Wang, Y., Yao, Y., Ding, J. and Xiao, X., “Stable control of underactuated bipedal walking based on motion state of center-of-mass,” Robot 39(3), 324332 (2017).Google Scholar
Yan, Z., Minghui, W. and Hui, L., “On obstacle-surmounting performance for a transformable tracked robot,” Robot 37(6), 693701 (2015).Google Scholar
Dąbrowska, A., S. Konopka, M. Przybysz and A. Rubiec, “Ability to Negotiate Terrain Obstacles by Lightweight Six-Wheeled Unmanned Ground Vehicles,” In: Intelligent Technologies in Logistics and Mechatronics Systems (ITELMS) (2015) pp. 102109.Google Scholar
Rao, W., Shi, J. and Wang, J., “Analysis of dynamic stability for articulated—tracked robot climbing stairs,” J. Mech. Eng. 50(15), 6067 (2014).CrossRefGoogle Scholar
Mann, M. and Shiller, Z., “Dynamic Stability of Off-Road Vehicles: Quasi-3D Analysis,” In: 2008 IEEE International Conference on Robotics and Automation (IEEE, 2008) pp. 23012306.CrossRefGoogle Scholar
Qiao, H., Zhong, S., Chen, Z. and Wang, H., “Improving performance of robots using human-inspired approaches: A survey,” Sci. China Inf. Sci. 65(12), 131 (2022).CrossRefGoogle Scholar
Su, H., Qi, W., Hu, Y., Karimi, H. R., Ferrigno, G. and De Momi, E., “An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators,” IEEE Trans. Ind. Inform. 18(3), 18641872 (2020).CrossRefGoogle Scholar
Lim, K. B., Kang, J.-h., Yoon, Y.-S., Lee, S. H. and Kang, S., “Obstacle-Overcoming Algorithm for Unmanned Ground Vehicle with Actively Articulated Suspensions on Unstructured Terrain,” In: 2008 International Conference on Control, Automation and Systems (IEEE, 2008) pp. 324328.Google Scholar
Li, Z. and Fu, Y., “Motion planning of a bio-inspired biped wall climbing robot stepping over obstacles based on genetic algorithm,” Jiqiren(Robot) 34(6), 751757 (2012).Google Scholar
Bruzzone, L. and Quaglia, G., “Review article: Locomotion systems for ground mobile robots in unstructured environments,” Mech. Sci. 3(2), 4962 (2012).CrossRefGoogle Scholar
Miaolei, H. and He, J., “A real-time h $\infty$ cubature kalman filter based on svd and its application to a small unmanned helicopter,” Optik 140, 96103 (2017). doi: 10.1016/j.ijleo.2017.04.021 Google Scholar
He, M. and He, J., “Extended state observer-based robust backstepping sliding mode control for a small-size helicopter,” IEEE Access 6, 3348033488 (2018). doi: 10.1109/ACCESS.2018.2845134 CrossRefGoogle Scholar
He, M. and He, J., “A dynamic enhanced robust cubature kalman filter for the state estimation of an unmanned autonomous helicopter,” IEEE Access 7, 148531148540 (2019). doi: 10.1109/ACCESS.2019.2946855 CrossRefGoogle Scholar
He, M., He, J. and Scherer, S., “Model-based real-time robust controller for a small helicopter,” Mech. Syst. Signal Process. 146, 107022 (2021). doi: 10.1016/j.ymssp.2020.107022 CrossRefGoogle Scholar
Chen, D., He, J., Chen, G., Yu, X., He, M., Yang, Y., Li, J. and Zhou, X., “Human-Robot Skill Transfer Systems for Mobile Robot Based on Multi Sensor Fusion,” In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (IEEE, 2020) pp. 13541359.CrossRefGoogle Scholar
Zhou, X., He, J., He, Q., Ren, C., Bhushan, and He, M., “Motion kinematics analysis of a horse inspired terrain-adaptive unmanned vehicle with four hydraulic swing arms,” IEEE Access 8, 194351194362 (2020). doi: 10.1109/ACCESS.2020.3033148 CrossRefGoogle Scholar
Miaolei, H. and Jilin, H., “Modeling and Robust Attitude Controller Design for a Small Size Helicopter,” In: 2019 IEEE International Conference on Industrial Technology (ICIT) (IEEE, 2019) pp. 145150.Google Scholar
He, M., He, J. and Zhou, X.-Y., “Robust flight control of a small unmanned helicopter,” Robot 38(3), 337342 (2016).Google Scholar
Zhou, X., He, J., Chen, D., Li, J., Jiang, C., Ji, M. and He, M., “Human-robot skills transfer interface for uav-based precision pesticide in dynamic environments,” Assembly Autom. 41(3), 345357 (2021).CrossRefGoogle Scholar
Fan, X.-M. and Ruan, Q., “Design and locomotion analysis of a close-chain leg-wheel mobile platform,” Ind. Robot Int. J. Robot. Res. Appl. 50(1), 122134 (2022).CrossRefGoogle Scholar
Zhang, J. and He, X., “Design and Obstacle-Surmounting Analysis of a Novel 6 $\times$ 6 Wheel-Tracked Unmanned Ground Platform,” In: 2021 7th International Conference on Robotics and Artificial Intelligence (2021) pp. 4651.Google Scholar
Li, C., Zhu, A., Zheng, C., Mao, H., Arif, M. A., Song, J. and Zhang, Y., “Design and Analysis of a Spherical Robot Based on Reaction Wheel Stabilization,” In: 2022 19th International Conference on Ubiquitous Robots (UR) (IEEE, 2022) pp. 143148.CrossRefGoogle Scholar
Rui, H.-B., Li, L.-I., Cao, W., Wang, T.-C., Duan, K.-W. and Wu, Y.-H., “Gait planning and obstacle-surmounting performance analysis of wheel-track-leg composite bionic robot,” Chin. J. Eng. Des. 29(2), 133142 (2022).Google Scholar
Wang, R., Chen, Z., Xu, K., Wang, S., Wang, J. and Li, B., “Hybrid Obstacle-Surmounting Gait for Hexapod Wheel-Legged Robot in Special Terrain,” In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM) (IEEE, 2021) pp. 16.CrossRefGoogle Scholar
Liu, Z., Wang, Y., Wang, J., Fei, Y. and Du, Q., “An obstacle-avoiding and stiffness-tunable modular bionic soft robot,” Robotica 40(8), 115 (2022).CrossRefGoogle Scholar
Drotman, D., Ishida, M., Jadhav, S. and Tolley, M. T., “Application-driven design of soft, 3-D printed, pneumatic actuators with bellows,” IEEE/ASME Trans. Mechatron. 24(1), 7887 (2018).CrossRefGoogle Scholar
Guo, Y., Guo, J., Liu, L., Liu, Y. and Leng, J., “Bioinspired multimodal soft robot driven by a single dielectric elastomer actuator and two flexible electroadhesive feet,” Extreme Mech. Lett. 53, 101720 (2022). doi: 10.1016/j.eml.2022.101720 CrossRefGoogle Scholar
Johnsen, L. P. and Tsukagoshi, H., “Deformation-driven closed-chain soft mobile robot aimed for rolling and climbing locomotion,” IEEE Robot. Autom. Lett. 7(4), 1026410271 (2022).CrossRefGoogle Scholar
Hada, T., Iguchi, K. and Aoki, T., “Development of flexible deformation mobile robot composed of multiple units and pneumatic self-excited valve,” J. Robot. Mechatron. 34(2), 478485 (2022).CrossRefGoogle Scholar
Angatkina, O., Alleyne, A. G. and Wissa, A., “Robust design and evaluation of a novel modular origami-enabled mobile robot (oscar),” J. Mech. Robot. 15(2), 021015 (2022).CrossRefGoogle Scholar
Liu, Y., Zhao, D., Chen, Y., Wang, D., Wen, Z., Ye, Z., Guo, J., Zhou, H., Qu, S. and Yang, W., “Bioars: Designing Adaptive and Reconfigurable Bionic Assembly Robotic System with Inchworm Modules,” In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 1168111687.CrossRefGoogle Scholar
Khan, M. B., Chuthong, T., Do, C. D., Thor, M., Billeschou, P., Larsen, J. C. and Manoonpong, P., “icrawl: An inchworm-inspired crawling robot,” IEEE Access 8, 200655200668 (2020). doi: 10.1109/ACCESS.2020.3035871 CrossRefGoogle Scholar
Wan, Z., Sun, Y., Qin, Y., Skorina, E. H., Gasoto, R., Luo, M., Fu, J. and Onal, C. D., “Design, analysis, and real-time simulation of a 3D soft robotic snake,” Soft Robot. 10(2), 258268 (2022).CrossRefGoogle ScholarPubMed
Nodehi, S. E., Bruzzone, L. and Fanghella, P., “Snaketrack, a Bio-Inspired, Single Track Mobile Robot with Compliant Vertebral Column for Surveillance and Inspection,” In: International Conference on Robotics in Alpe-Adria Danube Region (Springer, Cham, 2022) pp. 513520.Google Scholar
“Guardian S: Remote visual inspection and surveillance robot,” Sarcos Technology and Robotics Corporation. https://www.sarcos.com/products/guardian-s/.Google Scholar
Qiao, H., Chen, J. and Huang, X., “A survey of brain-inspired intelligent robots: Integration of vision, decision, motion control, and musculoskeletal systems,” IEEE Trans. Cybern. 52(10), 1126711280 (2022).CrossRefGoogle ScholarPubMed
Su, H., Qi, W., Yang, C., Sandoval, J., Ferrigno, G. and De Momi, E., “Deep neural network approach in robot tool dynamics identification for bilateral teleoperation,” IEEE Robot. Autom. Lett. 5(2), 29432949 (2020).CrossRefGoogle Scholar
Ceccarelli, M., Cafolla, D., Russo, M. and Carbone, G., “Heritagebot platform for service in cultural heritage frames,” Int. J. Adv. Robot. Syst. 15(4), 1729881418790692 (2018).CrossRefGoogle Scholar
Cafolla, D., Russo, M. and Ceccarelli, M., “Experimental validation of heritagebot iii, a robotic platform for cultural heritage,” J. Intell. Robot. Syst. 100(1), 223237 (2020).CrossRefGoogle Scholar
Shachaf, D., Inbar, O. and Zarrouk, D., “Rsaw, a highly reconfigurable wave robot: Analysis, design, and experiments,” IEEE Robot. Autom. Lett. 4(4), 44754482 (2019).CrossRefGoogle Scholar
Kislassi, T. and Zarrouk, D., “A minimally actuated reconfigurable continuous track robot,” IEEE Robot. Autom. Lett. 5(2), 652659 (2019).Google Scholar
Song, Z., Luo, Z., Wei, G. and Shang, J., “A portable six-wheeled mobile robot with reconfigurable body and self-adaptable obstacle-climbing mechanisms,” J. Mech. Robot. 14(5), 051010 (2022).CrossRefGoogle Scholar
Zhang, S., Yao, J.-T., Wang, Y.-B., Liu, Z.-S., Xu, Y.-D. and Zhao, Y.-S., “Design and motion analysis of reconfigurable wheel-legged mobile robot,” Def. Technol. 18(6), 10231040 (2022).CrossRefGoogle Scholar
Pankert, J., Valsecchi, G., Baret, D., Zehnder, J., Pietrasik, L. L., Bjelonic, M. and Hutter, M., “Design and motion planning for a reconfigurable robotic base,” IEEE Robot. Autom. Lett. 7(4), 90129019 (2022).CrossRefGoogle Scholar
Cui, X., Sun, Y., Tian, Y., Xu, K. and Kou, S., “Mechanical Design and Rolling Locomotion Analyses of a Novel Reconfigurable Mobile Robot Constructed by a Parallel Mechanism,” In: 2022 IEEE International Conference on Mechatronics and Automation (ICMA) (IEEE, 2022) pp. 744748.CrossRefGoogle Scholar
Hou, Y., Yang, Y. and Xie, Z., “Technology Status and Development Trend of Modular Moving System,” In: Journal of Physics: Conference Series, vol. 2160 (IOP Publishing, 2022) pp. 012075.Google Scholar
“RWT: Reconfigurable wheel track and extreme travel suspension by darpa.” DARPA & CMU. https://www.youtube.com/watch?v=8iqODh0Czls .Google Scholar
Zhu, Z., Adouane, L. and Quilliot, A., “A decentralized multi-criteria optimization algorithm for multi-unmanned ground vehicles (MUGVs) navigation at signal-free intersection,” IFAC-PapersOnLine 54(2), 327334 (2021).CrossRefGoogle Scholar
Liu, J., Anavatti, S., Garratt, M. and Abbass, H. A., “Modified continuous ant colony optimisation for multiple unmanned ground vehicle path planning,” Expert. Syst. Appl. 196, 116605 (2022). doi: 10.1016/j.eswa.2022.116605 CrossRefGoogle Scholar