Hostname: page-component-7dd5485656-tbj44 Total loading time: 0 Render date: 2025-10-31T14:05:58.744Z Has data issue: false hasContentIssue false

A singularity-robust and sensorless-calibrated continuum robot system for dexterous laryngeal surgery

Published online by Cambridge University Press:  30 October 2025

Sihan Zhao
Affiliation:
School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, China Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing, China
Rui Tao
Affiliation:
Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing, China
Yunkai Ma*
Affiliation:
Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing, China
Yichen Fu
Affiliation:
School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, China Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing, China
Jun Hou
Affiliation:
Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing, China
Junfeng Fan
Affiliation:
Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing, China
Fengshui Jing
Affiliation:
School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, China Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing, China
Gui-Bin Bian
Affiliation:
Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing, China
*
Corresponding author: Yunkai Ma; Email: yunkai.ma@ia.ac.cn

Abstract

A major challenge in laryngeal surgery today is the limited flexibility of surgical operations. To address the limitation, this paper proposes a novel continuum robot (CR) system with enhanced dexterity, a robust inverse kinematics algorithm, and a sensorless automatic calibration method. The proposed CR possesses 4 flexible degrees of freedom, allowing for control based on angles and end-effector position. Compared with traditional Jacobian-based methods, the proposed inverse kinematics algorithm effectively addresses the singularity issue arising from curvature hypotheses. Mitigating the singularity is crucial for ensuring continuous and stable motion planning. The calibration method enables automatic initialization without additional sensors, a capability not previously reported in the literature. The efficient and automatic calibration reduces preparation time for laryngeal surgery. Compared to the manual calibration, which requires approximately 210 s, the proposed method reduces the calibration time by 160 s, thereby achieving a 76.19 % improvement in efficiency. Taking the damped least squares method as the baseline, the inverse kinematics algorithm reduces the maximum solving error from 7.36 mm to just 0.05 mm. Furthermore, the CR is capable of dexterous motion within narrow and curved cavities. The phantom and animal experiment results demonstrate the practicality and reliability of the proposed CR system in laryngeal surgery.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Dziegielewski, P. T., Kang, S. Y. and Ozer, E., “Transoral robotic surgery (TORS) for laryngeal and hypopharyngeal cancers,” J. Surg. Oncol. 112(7), 702706 (2015).10.1002/jso.24002CrossRefGoogle ScholarPubMed
Piazza, C., Peretti, G. and Poorten, V. V., “Advances in transoral approaches for laryngeal cancer,” Front. Oncol. 8, 455 (2018).10.3389/fonc.2018.00455CrossRefGoogle ScholarPubMed
Blanco, R. G. F., Ha, P. K., Califano, J. A. and Saunders, J. M., “Transoral robotic surgery of the vocal cord,” J. Laparoendosc. Adv. Surg. Tech. 21(2), 157159 (2011).10.1089/lap.2010.0350CrossRefGoogle ScholarPubMed
Wang, H., Wang, X., Yang, W., Du, Z. and Yan, Z., “Construction of controller model of notch continuum manipulator for laryngeal surgery based on hybrid method,” IEEE/ASME Trans. Mechatron. 26(2), 10221032 (2020).10.1109/TMECH.2020.3015133CrossRefGoogle Scholar
Kong, Y., Wang, J., Zhang, N., Song, S. and Li, B., “Dexterity analysis and motion optimization of in-situ torsionally-steerable flexible surgical robots,” IEEE Robot. Autom. Lett. 7(3), 83478354 (2022).10.1109/LRA.2022.3183531CrossRefGoogle Scholar
Xu, Y., Song, D., Zhang, Z., Wang, S. and Shi, C., “A novel extensible continuum robot with growing motion capability inspired by plant growth for path-following in transoral laryngeal surgery,” Soft Robot. 11(1), 171182 (2024).CrossRefGoogle ScholarPubMed
Bian, G.-B., Wang, S., Li, Z., Zhang, M.-Y., Wang, J., Wu, W.-Q., Guo, C. and Li, S.-Q., “Design and nonlinear error compensation of a multi-segment soft continuum robot for pulmonary intervention,” IEEE Trans. Med. Robot. Bion. 5(4), 832842 (2023).10.1109/TMRB.2023.3310011CrossRefGoogle Scholar
Hong, W., Feng, F., Xie, L. and Yang, G.-Z., “A two-segment continuum robot with piecewise stiffness for maxillary sinus surgery and its decoupling method,” IEEE/ASME Trans. Mechatron. 27(6), 44404450 (2022).CrossRefGoogle Scholar
Chen, Z., Renda, F., Gall, A. L., Mocellin, L., Bernabei, M., Dangel, T., Ciuti, G., Cianchetti, M. and Stefanini, C., “Data-driven methods applied to soft robot modeling and control: A review,” IEEE Trans. Autom. Sci. Eng. 22, 22412256 (2024).10.1109/TASE.2024.3377291CrossRefGoogle Scholar
Poon, H., Li, C., Gao, W., Ren, H. and Lim, C. M., “Evolution of robotic systems for transoral head and neck surgery,” Oral Oncol. 87, 8288 (2018).10.1016/j.oraloncology.2018.10.020CrossRefGoogle ScholarPubMed
Li, C., Gu, X., Xiao, X., Lim, C. M. and Ren, H., “Flexible robot with variable stiffness in transoral surgery,” IEEE/ASME Trans. Mechatron. 25(1), 110 (2020).CrossRefGoogle Scholar
Lai, J., Huang, K., Lu, B., Zhao, Q. and Chu, H. K., “Verticalized-tip trajectory tracking of a 3D-printable soft continuum robot: Enabling surgical blood suction automation,” IEEE/ASME Trans. Mechatron. 27(3), 15451556 (2022).10.1109/TMECH.2021.3090838CrossRefGoogle Scholar
Sampieri, C., Costantino, A., Pirola, F., Kim, D., Lee, K. and Kim, S.-H., “Neoadjuvant chemotherapy combined with transoral robotic surgery for stage III and IV laryngeal and hypopharyngeal carcinomas,” Oral Oncol. 140, 106371 (2023).CrossRefGoogle ScholarPubMed
Kong, Y., Zhang, N., Lin, B., Wang, J., Song, S. and Li, B., “Concentric wire-driven robots with in situ torsion for transnasal surgery,” IEEE/ASME Trans. Mechatron. 30(1), 599610 (2025).10.1109/TMECH.2024.3401757CrossRefGoogle Scholar
Obid, R., Redlich, M. and Tomeh, C., “The treatment of laryngeal cancer,” Oral Maxillofac. Surg. Clin. 31(1), 111 (2019).CrossRefGoogle ScholarPubMed
Wang, X., Fang, G., Wang, K., Xie, X., Lee, K.-H., Ho, J. D. L., Tang, W., Lam, J. and Kwok, K.-W., “Eye-in-hand visual servoing enhanced with sparse strain measurement for soft continuum robots,” IEEE Robot. Autom. Lett. 5(2), 21612168 (2020).10.1109/LRA.2020.2969953CrossRefGoogle Scholar
Godage, I. S., Guglielmino, E., Branson, D. T., Medrano-Cerda, G. A. and Caldwell, D. G. Novel modal approach for kinematics of multisection continuum arms,” IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) 10931098 (2011).CrossRefGoogle Scholar
Wang, F., Ye, W., Kang, X., Wang, H., Luo, J., Chen, L. and Tang, X., “FABRIKv: A fast, iterative inverse kinematics solver for surgical continuum robot with variable curvature model,” IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 84178424 (2023).Google Scholar
Armanini, C., Boyer, F., Mathew, A. T., Duriez, C. and Renda, F. Soft robots modeling: A structured overview,” IEEE Trans. Robot. 39(3), 17281748 (2023).CrossRefGoogle Scholar
Peng, R., Wang, Y. and Lu, P., “A tendon-driven continuum manipulator with robust shape estimation by multiple IMUs,” IEEE Robot. Autom. Lett. 9(4), 30843091 (2024).10.1109/LRA.2024.3363992CrossRefGoogle Scholar
Iqbal, F., Esfandiari, M., Amirkhani, G., Hoshyarmanesh, H., Lama, S., Tavakoli, M. and Sutherland, G. R., “Continuum and soft robots in minimally invasive surgery: A systematic review,” IEEE Access 13, 2405324079 (2025).10.1109/ACCESS.2025.3535677CrossRefGoogle Scholar
Zhang, T., Gao, H. and Ren, H., “Inconstant curvature kinematics of parallel continuum robot without static model,” IEEE Int. Conf. Robot. Autom. (ICRA) 58645870 (2024).10.1109/ICRA57147.2024.10610251CrossRefGoogle Scholar
Bian, G.-B., Zhang, M.-Y., Ye, Q., Ren, H., Zhai, Y.-P., Ma, R. and Li, Z., “Accurate shape and tip-contact-force estimation of multisegment continuum-robotic tubular bronchoscopes,” IEEE/ASME Trans. Mechatron. 112 (2025).CrossRefGoogle Scholar
Bian, G.-B., Zhang, M.-Y., Ye, Q., Ren, H., Zhai, Y.-P. and Ma, R., “Design and modeling of a thin-walled multi-segment continuum robotic bronchoscope,” IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 36203626 (2024).10.1109/IROS58592.2024.10801862CrossRefGoogle Scholar
Deng, Z., Wei, X., Pan, C., Li, G. and Hu, Y., “Shared control of tendon-driven continuum robots using visibility-guaranteed optimization for endoscopic surgery,” IEEE Trans. Med. Robot. Bion. 6(2), 487497 (2024).CrossRefGoogle Scholar
Mao, L., Yang, P., Tian, C., Shen, X., Wang, F., Zhang, H., Meng, X. and Xie, H., “Magnetic steering continuum robot for transluminal procedures with programmable shape and functionalities,” Nat. Commun. 15(1), 3759 (2024).10.1038/s41467-024-48058-xCrossRefGoogle ScholarPubMed
Ushiro, K., Watanabe, Y., Kishimoto, Y., Kawai, Y., Fujimura, S., Asato, R., Tsujimura, T., Hori, R., Kumabe, Y., Yasuda, K., Tamaki, H., Iki, T., Kitani, Y., Kurata, K., Kojima, T., Takata, K., Kada, S., Takebayashi, S., Shinohara, S., Hamaguchi, K., Miyazaki, M., Ikenaga, T., Maetani, T., Harada, H., Haji, T. and Omori, K., “Complications including dysphagia following transoral non-robotic surgery for pharyngeal and laryngeal squamous cell carcinoma: A retrospective multicenter study,” Auris Nasus Larynx 51(3), 575582 (2024).10.1016/j.anl.2024.03.005CrossRefGoogle ScholarPubMed
Kuroki, M., Shibata, H., Kobayashi, K., Matsubara, M., Akita, S., Yamada, T., Kato, R., Iinuma, R., Kawaura, R., Okuda, H., Mori, K., Ueda, N., Miyazaki, T. and Ogawa, T., “Postoperative pathological findings and prognosis of early laryngeal and pharyngeal cancer treated with transoral surgery,” Auris Nasus Larynx 51(6), 976983 (2024).10.1016/j.anl.2024.10.003CrossRefGoogle ScholarPubMed
Thuruthel, T. G., Falotico, E., Renda, F. and Laschi, C., “Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators,” IEEE Trans. Robot. 35(1), 124134 (2019).CrossRefGoogle Scholar
Zhang, L., Du, H., Qin, Z., Zhao, Y. and Yang, G., “Real-time optimized inverse kinematics of redundant robots under inequality constraints,” Sci. Rep. 14(1), 29754 (2024).10.1038/s41598-024-81174-8CrossRefGoogle ScholarPubMed
Du, Y., Zhang, S., Zhang, Z. and Wang, H., “Shape deformation analysis and dynamic modeling of a switchable rigid-continuum robot,” Robotica 42(11), 39343956 (2024).10.1017/S0263574724001735CrossRefGoogle Scholar
Schäfer, M. B., Glöckner, A. M., Friedrich, G. R., Meiringer, J. G. and Pott, P. P., “Measuring interaction forces in surgical telemanipulation using conventional instruments,” Robotica 41(4), 13351347 (2023).CrossRefGoogle Scholar
Cobos-Guzman, S., Palmer, D. and Axinte, D., “Kinematic model to control the end-effector of a continuum robot for multi-axis processing,” Robotica 35(1), 224240 (2017).10.1017/S0263574715000946CrossRefGoogle Scholar
Ji, G., Yan, J., Du, J., Yan, W., Chen, J., Lu, Y., Rojas, J. and Cheng, S. S., “Towards safe control of continuum manipulator using shielded multiagent reinforcement learning,” IEEE Robot. Autom. Lett. 6(4), 74617468 (2021).CrossRefGoogle Scholar
Chen, Q., Ming, C. and Qin, Y., “Adaptive neural network-based sliding mode control for trajectory tracking control of cable-driven continuum robots with uncertainties,” Robotica 43(1), 316331 (2025).CrossRefGoogle Scholar
Xu, K., Zhao, J. and Zheng, X., “Configuration comparison among kinematically optimized continuum manipulators for robotic surgeries through a single access port,” Robotica 33(10), 20252044 (2015).CrossRefGoogle Scholar
Van Abel, K. M., Yin, L. X., Price, D. L., Janus, J. R., Kasperbauer, J. L. and Moore, E. J., “One-year outcomes for Da Vinci single port robot for transoral robotic surgery,” Head Neck 42(8), 20772087 (2020).CrossRefGoogle Scholar
Villalobos, J., Sanchez, I. Y. and Martell, F., “Singularity analysis and complete methods to compute the inverse kinematics for a 6-DOF UR/TM-type robot,” Robotics 11(6), 137 (2022).10.3390/robotics11060137CrossRefGoogle Scholar
Shahawi, A. M. E. and Aboalnaga, A. A., “The effect of autoclave cycles on the mechanical properties and surface roughness of NiTi archwires: Ex-vivo study,” BMC Oral Health 24(1), 1284 (2024).10.1186/s12903-024-04877-4CrossRefGoogle ScholarPubMed
Sastri, V. R., “4 - Material Requirements for Plastics Used in Medical Devices”, In: Plastics in Medical Devices, 3rdedn. (2022) pp. 65112.Google Scholar
Supplementary material: File

Zhao et al. supplementary material

Zhao et al. supplementary material
Download Zhao et al. supplementary material(File)
File 1.3 MB