Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T10:47:01.072Z Has data issue: false hasContentIssue false

Singularity, isotropy, and velocity transmission evaluation of a three translational degrees-of-freedom parallel robot

Published online by Cambridge University Press:  17 May 2012

Yongjie Zhao*
Affiliation:
Department of Mechatronics Engineering, Shantou University, Shantou City, Guangdong 515063, P. R. China
*
*Corresponding author. E-mail: meyjzhao@yahoo.com.cn

Summary

Performance evaluation of a parallel robot is a multicriteria problem. By taking Delta robot as an object of study, this paper presents the kinematic performance evaluation of a three translational degrees-of-freedom parallel robot from the viewpoint of singularity, isotropy, and velocity transmission. It is shown that the determinant of a Jacobian matrix cannot measure the distance from the singular configuration due to the existing inverse kinematic singularity of a Delta robot. The determinants of inverse and direct kinematic Jacobian matrices are adopted for the measurement of distance from the singular configuration based on the theory of numerical linear dependence. The denominator of the Jacobian matrix will be lost in the computation of the condition number when the end-effector is on the centerline of the workspace, so the Delta robot may also be nearly at a singular configuration when the condition number of the Jacobian matrix is equal to 1. The velocity transmission index whose physical meaning is the maximum input angular velocity when the end-effector translates in the unit velocity is presented. The evaluation of singularity, isotropy, and velocity transmission of a Delta robot is investigated by simulation. The velocity transmission index can also be used for the velocity transmission evaluation of a parallel robot with pure rotational degrees-of-freedom based on the principle of similarity. The physical meaning is modified to be the maximum input velocity when the end-effector rotates in the unit angular velocity.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Clavel, R., “Delta, a Fast Robot with Parallel Geometry,” In: Proceedings of the 18th International Symposium on Industrial Robots (ISIR), Sydney, Australia (1988) pp. 91100.Google Scholar
2.Bonev, I., “Delta parallel robot – the story of success,” Newsletter (2001). availabe at: http://www.parallemic.org/Reviews/Review002.html.Google Scholar
3.Vischer, P. and Clavel, R., “Kinematic calibration of the parallel Delta robot,” Robotica 16 (2), 207218 (1998).CrossRefGoogle Scholar
4.Di Gregorio, R. and Zanforlin, R., “Workspace analytic determination of two similar translational parallel manipulators,” Robotica 21 (5), 555566 (2003).CrossRefGoogle Scholar
5.Gregorio, R. Di, “Determination of singularities in Delta-like manipulators,” Int. J. Robot. Res. 23 (1), 8996 (2004).CrossRefGoogle Scholar
6.Staicu, S., “Recursive modelling in dynamics of Delta parallel robot,” Robotica 27 (2), 199207 (2009).CrossRefGoogle Scholar
7.Zhao, Y. J., Yang, Z. Y. and Huang, T., “Inverse dynamics of Delta robot based on the principle of virtual work,” Trans. Tianjin Univ. 11 (4), 268273 (2005).Google Scholar
8.Hong, J. and Yamamoto, M., “A calculation method of the reaction force and moment for a Delta-type parallel link robot fixed with a frame,” Robotica 27 (4), 579587 (2009).CrossRefGoogle Scholar
9.Li, Y. and Xu, Q., “Dynamics Analysis of Modified Delta Parallel Robot for Cardiopulmonary Resuscitation,” In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems, Center Edmont, Alberta, Canada (2005) pp. 33713376.Google Scholar
10.Fumagalli, A. and Masarati, P., “Real-time inverse dynamics control of parallel manipulators using general-purpose multibody software,” Multibody Syst. Dyn. 22 (1), 4768 (2009).CrossRefGoogle Scholar
11.Codourey, A., “Dynamic modeling of parallel robots for computed-torque control implementation,” Int. J. Robot. Res. 17 (2), 13251336 (1998).CrossRefGoogle Scholar
12.Kosinska, A., Galicki, M. and Kedzior, K., “Designing and optimization of parameters of Delta-4 parallel manipulator for a given workspace,” J. Robot. Syst. 20 (9), 539548 (2003).CrossRefGoogle Scholar
13.Miller, K., “Maximization of workspace volume of 3-DOF spatial parallel manipulators,” ASME J. Mech. Des. 124 (2), 347357 (2002).CrossRefGoogle Scholar
14.Laribi, M. A., Romdhane, L. and Zeghloul, S., “Analysis and dimensional synthesis of the Delta robot for a prescribed workspace,” Mech. Mach. Theory 42 (7), 859870 (2007).CrossRefGoogle Scholar
15.Neugebauer, R., Drossel, W. G. and Harzbecker, C., “Method for the optimization of kinematic and dynamic properties of parallel kinematic machines,” Ann. CIRP 55 (1), 403406 (2006).CrossRefGoogle Scholar
16.Stock, M. and Miller, K., “Optimal kinematic design of spatial parallel manipulators: Application to linear Delta robot,” ASME J. Mech. Des. 125 (2), 292301 (2003).CrossRefGoogle Scholar
17.Baradat, C., Arakelian, V. and Briot, S., “Design and prototyping of a new balancing mechanism for spatial parallel manipulators,” ASME J. Mech. Des. 130 (7), 072305-1–072305-13 (2008).CrossRefGoogle Scholar
18.Brogårdh, T., “Design of High Performance Parallel Arm Robots for Industrial Applications,” Proceedings of a Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of A Treatise on the Theory of Screws, Trinity College, University of Cambridge, Cambridge, UK (2000).Google Scholar
19.Wang, X. Y., Baron, L. and Cloutier, G., “The Design of Parallel Manipulators of Delta Topology Under Isotropic Constraints,” In: Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin, China (2004) pp. 202206.Google Scholar
20.Stan, S. D., Manic, M., Szep, C. and Balan, R., “Performance Analysis of 3-DOF Delta Parallel Robot,” In: Proceedings of the IEEE International Conference on Human System Interaction, Yokohama, Japan (2011) pp. 215220.Google Scholar
21.Hsu, K. S., Karkoub, M., Tsai, M. C. and Her, M. G., “Modelling and index analysis of a Delta-type mechanism,” Proc. Inst. Mech. Engrs, Part K: J. Multi-Body Dyn. 218 (3), 121132 (2004).Google Scholar
22.López, M., Castillo, E., García, G. and Bashir, A., “Delta robot: Inverse, direct, and intermediate Jacobians,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 220 (1), 103109 (2006).CrossRefGoogle Scholar
23.Zhao, Y. J. and Gao, F., “Dynamics analysis and characteristics of the 8-PSS flexible redundant parallel manipulator,” Robot. Comput. Integr. Manuf. 25 (4–5), 770781 (2009).CrossRefGoogle Scholar
24.Zhao, Y. J. and Gao, F., “The joint velocity, torque, and power capability evaluation of a redundant parallel manipulator,” Robotica 29 (3), 483493 (2011).CrossRefGoogle Scholar
25.Salisbury, J. K. and Graig, J. J., “Articulated hands: Force control and kinematic issues,” Int. J. Robot. Res. 1 (1), 417 (1982).CrossRefGoogle Scholar
26.Angeles, J. and Rojas, A., “Manipulator kinematic inversion via condition-number minimization and continuation,” Int. J. Robot. Autom. 2 (2), 6169 (1987).Google Scholar
27.Angeles, J. and Lopez-Cajun, C. S., “Kinematic isotropy and the conditioning index of serial robotic manipulators,” Int. J. Robot. Res. 11 (6), 560571 (1992).CrossRefGoogle Scholar
28.Gosselin, C. M. and Angeles, J., “The optimum kinematic design of a planar three-degree-of-freedom parallel manipulators,” ASME J. Mech. Trans. Automat. Des. 110 (1), 3541 (1988).CrossRefGoogle Scholar
29.Gosselin, C. M. and Angeles, J., “The optimum kinematic design of a spherical three degree-of-freedom parallel manipulator,” ASME J. Mech. Trans. Automat. Des. 111 (2), 202207 (1989).CrossRefGoogle Scholar
30.Gosselin, C. M. and Angeles, J., “A global performance index for the kinematic optimization of robotic manipulators,” ASME J. Mech. Des. 113 (3), 220226 (1991).CrossRefGoogle Scholar
31.Lipkin, H. and Duffy, J., “Hybrid twist and wrench control for a robotic manipulator,” ASME J. Mech. Trans. Automat. Des. 110 (6), 138144 (1988).CrossRefGoogle Scholar
32.Doty, K. L., Melchiorri, C. and Bonevento, C., “A theory of generalized inverse applied to robotics,” Int. J. Robot. Res. 12 (1), 119 (1993).CrossRefGoogle Scholar
33.Doty, K. L., Melchiorri, C., Schwartz, E. M. and Bonivento, C., “Robot manipulability,” IEEE Trans. Robot. Autom. 11 (3), 462468 (1995).CrossRefGoogle Scholar
34.Gosselin, C. M., “Dexterity indices for planar and spatial robotic manipulators,” In: Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA (May 13–18, 1990) pp. 650655.CrossRefGoogle Scholar
35.Kim, S. G. and Ryu, J., “New dimensionally homogeneous Jcaobian matrix formulation by three end-effector points for optimal design of parallel manipulators,” IEEE Trans. Robot. Autom. 19 (4), 731737 (2003).Google Scholar
36.Yoshikawa, T., “Manipulability of robotic mechanisms,” Int. J. Robot. Res. 4 (2), 39 (1985).CrossRefGoogle Scholar
37.Yoshikawa, T., “Translational and rotational manipulability of robotic manipulators,” In: Proceedings of the American Control Conference, San Diego, CA, USA (1991) pp. 10701075.Google Scholar
38.Hong, K. S. and Kim, J. G., “Manipulability analysis of a parallel machine tool: Application to optimal link length design,” J. Robot. Syst. 17 (8), 403415 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
39.Li, Y. and Xu, Q., “Design and development of a medical parallel robot for cardiopulmonary resuscitation,” IEEE/ASME Trans. Mechatronics 12 (3), 265273 (2007).CrossRefGoogle Scholar
40.Xu, Q. and Li, Y., “Design and analysis of a new singularity-free three-prismatic-revolute-cylindrical translational parallel manipulator,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 221 (5), 565576 (2007).CrossRefGoogle Scholar
41.Li, Y. and Xu, Q., “Kinematic analysis and design of a new 3-DOF translational parallel manipulator,” ASME J. Mech. Des. 128 (4), 729737 (2006).CrossRefGoogle Scholar
42.Li, Y. and Xu, Q., “A new approach to the architecture optimization of a general 3-PUU translational parallel manipulator,” J. Intell. Robot. Sys. 46 (1), 5972 (2006).CrossRefGoogle Scholar
43.Merlet, J. P., “Jacobian, manipulability, condition number, and accuracy of parallel robots,” ASME J. Mech. Des. 128 (1), 199206 (2006).CrossRefGoogle Scholar
44.Chen, C. and Angeles, J., “Generalized transmission index and transmission quality for spatial linkages,” Mech. Mach. Theory 42 (9), 12251237 (2007).CrossRefGoogle Scholar
45.Balli, S. S. and Chand, S., “Transmission angle in mechanisms,” Mech. Mach. Theory 37 (2), 175195 (2002).CrossRefGoogle Scholar
46.Wang, J. S., Wu, C. and Liu, X. J., “Performance evaluation of parallel manipulators: Motion/force transmissibility and its index,” Mech. Mach. Theory 45 (10), 14621476 (2010).CrossRefGoogle Scholar
47.Wu, C., Liu, X. J., Wang, L. P. and Wang, J. S., “Optimal design of spherical 5R parallel manipulators considering the motion force transmissibility,” ASME J. Mech. Des. 132 (3), 031002-1–031002-10 (2010).CrossRefGoogle Scholar
48.Gosselin, C. M. and Angeles, J., “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Robot. Autom. 6 (3), 281290 (1990).CrossRefGoogle Scholar
49.He, X. C., “On singularity, ill-condition and related problems,” Num. Math. J. Chinese Uni. 6 (1), 7485 (1984).Google Scholar
50.He, X. C., “Theory of numerical linear dependence and its applications,” Num. Math. J. Chinese Uni. 1 (1), 119 (1979).Google Scholar
51.He, X. C., “On the continuity of generalized inverse-application of the theory of numerical dependence,” Num. Math. J. Chinese Uni. 2 (2), 168172 (1979).Google Scholar
52.Huang, T.,Li, M., Li, Z. X., Chetwynd, D. G. and Whitehouse, D. J., “Optimal kinematic design of 2-DOF parallel manipulators with well-shaped workspace bounded by a specified conditioning index,” IEEE Trans. Robot. Autom. 20 (3), 538543 (2004).CrossRefGoogle Scholar
53.Huang, T., Mei, J. P., Li, Z. X., “A method for estimating servomotor parameters of a parallel robot for rapid pick-and-place operations,” ASME J. Mech. Des. 127 (3), 596601 (2005).CrossRefGoogle Scholar
54.Zhang, L. M., Mei, J. P., Zhao, X. M. and Huang, T., “Dimensional synthesis of the Delta robot using transmission angle constraints,” Robotica, doi:10.1017/S0263574711000622, published online: (Jul. 01, 2011). 30 (3), 343349 (2012).CrossRefGoogle Scholar
55.Tsai, L.W., Robot Analysis, the Mechanics of Serial and Parallel Manipulators (John Wiley, New York, 1999).Google Scholar