Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:04:02.035Z Has data issue: false hasContentIssue false

Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties

Published online by Cambridge University Press:  07 August 2013

Mohammad Reza Soltanpour
Affiliation:
Department of Electrical Engineering, Aeronautical University of Science and Technology, Tehran, Iran
Mohammad Hassan Khooban*
Affiliation:
Electronic and Electrical Department, Shiraz University of Technology, Shiraz, Iran
Mahmoodreza Soltani
Affiliation:
Department of Civil Engineering, Clemson University, Clemson, South Carolina, USA
*
*Corresponding author. E-mail: mhkhoban@gmail.com

Summary

This paper proposes a simple fuzzy sliding mode control to achieve the best trajectory tracking for the robot manipulator. In the core of the proposed method, by applying the feedback linearization technique, the known dynamics of the robot's manipulator is removed; then, in order to overcome the remaining uncertainties, a classic sliding mode control is designed. Afterward, by applying the TS fuzzy model, the classic sliding mode controller is converted to fuzzy sliding mode controller with very simple rule base. The mathematical analysis shows that the robot manipulator with the new proposed control in tracking the robot manipulator in presence of uncertainties has the globally asymptotic stability. Finally, to show the performance of the proposed method, the controller is simulated on a robot manipulator with two degrees of freedom as case study of the research. Simulation results demonstrate the superiority of the proposed control scheme in presence of the structured and unstructured uncertainties.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Spong, M., Hutchinson, S. and Vidyasagar, M., Robot Modeling and Control (Wiley, New York, 2006).Google Scholar
2.Khooban, M. H., Alfi, A. and Abadi, D. Nazari Maryam, “Teaching-learning-based optimal interval type-2 fuzzy PID controller design: A nonholonomic wheeled mobile robots,” Robotica. Available on CJO2013. doi:10.1017/S0263574713000283.Google Scholar
3.Khooban, M. H., Alfi, A., Abadi, N. Nazari Maryam, “Control of a class of nonlinear uncertain chaotic systems via an optimal type-2 fuzzy PID controller,” IET. Sci. Meas. Technol. 7, 19 (2013).Google Scholar
4.Liang, Y.-W., Xu, S.-D., Liaw, D.-C. and Chen, C.-C., “A study of TS model-based SMC scheme with application to robot control,” IEEE Trans. Ind. Electron. 55 (11), 39643971 (2008).Google Scholar
5.Becedas, J., Trapero, J. R., Feliu, V. and Ramírez, H. S., “Adaptive controller for single-link flexible manipulators based on algebraic identification and generalized proportional integral control,” IEEE Trans. Syst. Man Cybern. B. 39 (3), 735751 (2009).CrossRefGoogle ScholarPubMed
6.Neo, S. S. and Er, M. J., “Adaptive fuzzy controllers of a robot manipulator,” Int. J. Syst. Sci. 27 (6), 519532 (1996).CrossRefGoogle Scholar
7.Jin, Y., “Decentralized adaptive fuzzy control of robot manipulators,” IEEE Trans. Syst. Man Cybern. B. 28 (1), 4757 (1998).Google Scholar
8.Wai, R.-J. and Yang, Z.-W., “Adaptive fuzzy neural network control design via a TS fuzzy model for a robot manipulator including actuator dynamics,” IEEE Trans. Syst. Man Cybern.B. 38 (5), 13261346 (2008).Google Scholar
9.Hyun, C.-H., Park, C.-W. and Kim, S., “TS fuzzy model based indirect adaptive fuzzy observer and controller design,” Inf. Sci. 180 (11), 23142327 (2010).Google Scholar
10.Pagilla, P. R., Yu, B. and Pau, K. L., “Adaptive control of time varying mechanical systems: Analysis and experiments,” IEEE/ASME. Trans. Mechatronics 5 (4), 410418 (2000).CrossRefGoogle Scholar
11.Rojko, A. and Jezernik, K., “Sliding-mode motion controller with adaptive fuzzy disturbance estimation,” IEEE. Trans. Ind. Electron. 51 (5), 963971 (2004).Google Scholar
12.Cupertino, F., Naso, D., Mininno, E. and Turchiano, B., “Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors,” IEEE. Trans. Ind. Appl. 45 (5), 16881696 (2009).Google Scholar
13.Morioka, H., Wada, K., Sabanovic, A. and Jezernik, K., “Neural network based chattering free sliding mode control,” In: Proceedings of the 34th SICE Annual Conference. International Session Papers, IEEE (1995) pp. 13031308.Google Scholar
14.Jezernik, K., Rodič, M. and Šafarič, R. and Curk, B., “Neural network sliding mode robot control,” J. Robtica 15 (1), 2330 (1997).CrossRefGoogle Scholar
15.Hu, H. and Woo, P. Y., “Fuzzy supervisory sliding mode and neural network control for manipulators,” IEEE. Trans. Ind. Electron. 53 (3), 929940 (2006).Google Scholar
16.Li, C. T. and Tan, Y. H., “Neural sliding mode control for systems with hysteresisIn: Proceedings of IEEE International Symposium on Intelligent Control, Limassol, Cyprus (2005) pp. 467472.Google Scholar
17.Yildiz, Y., Sabanovic, A. and Abidi, K., “Sliding mode neuro controller for uncertain systems,” IEEE. Trans. Ind. Electron. 54 (3), 16761684 (2007).Google Scholar
18.Fateh, M. M. and Soltanpour, M. R., “Robust task-space control of robot manipulators under imperfect transformation of control space,” Int. J. Innovative Comput. Inf. Control. 5 (12), 39493960 (2009).Google Scholar
19.Soltanpour, M. R. and Shafiei, S. E., “Robust backstepping control of robot manipulator in task space with uncertainties in kinematics and dynamics,” J. Electron. Electr. Eng. Autom. Robot. 96 (8), 7580 (2009).Google Scholar
20.Soltanpour, M. R. and Siahi, M., “Robust control of robot manipulator in task space,” Int. J. Appl. Comput. Math. 8 (2), 227238 (2009).Google Scholar
21.Soltanpour, M. R., Fateh, M. M. and Ahmadifard, A. R., “Nonlinear tracking control on a robot manipulator in the task space with uncertain dynamics,” J. Appl. Sci. Asian Network Sci. Inf. 8 (23), 43974403 (2008).Google Scholar
22.Soltanpour, M. R. and Shafiei, S. E., “Design and stability analysis of a robust impedance control system for a robot manipulator,” Stud. Inf. Control. 17 (1), 3440 (2010).Google Scholar
23.Soltanpour, M. R. and Shafiei, S. E., “Robust adaptive control of manipulators in the task space by dynamical partitioning approach,” J. Electron. Electr. Eng. Autom. Robot. 101 (5), 7378 (2010).Google Scholar
24.Soltanpour, M. R. and Fateh, M. M., “Adaptive robust control of robot manipulators in the task space under uncertainties,” Aust. J. Basic Appl. Sci. 1 (3), 308322 (2009).Google Scholar
25.Soltanpour, M. R. and Fateh, M. M., “Sliding mode robust control of robot manipulators in the task space by suupport of feedback linearization and backstepping control,” World Appl. Sci. J. 6 (1), 7076 (2009).Google Scholar
26.Shafiei, S. E. and Soltanpour, M. R., “Neural network sliding-model-pid controller design for electrically driven robot manipulators,” Int. J. Innovative Comput. Inf. Control 5 (12), 39493960 (2011).Google Scholar
27.Soltanpour, M. R., Khalilpour, J. and Soltani, M., “Robust nonlinear control of robot manipulator with uncertainties in kinematics, dynamics and actuator models,” Int. J. Innovative Comput. Inf. Control 8 (8), 54875498 (2012).Google Scholar
28.Khooban, M. H. and Soltanpour, M. R., “Swarm optimization tuned fuzzy sliding mode control design for a class of nonlinear systems in presence of uncertainties,” J. Intell. Fuzzy Syst. 24 (2), 383394 (2013).Google Scholar