Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T08:22:16.604Z Has data issue: false hasContentIssue false

Robotics in laparoscopic surgery - A review

Published online by Cambridge University Press:  15 August 2022

Iham F. Zidane*
Affiliation:
Mechanical Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), 1029 Abu Kir, Alexandria, Egypt
Yasmin Khattab
Affiliation:
Mechanical Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), 1029 Abu Kir, Alexandria, Egypt
Sohair Rezeka
Affiliation:
Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt, 21544
Mohamed El-Habrouk
Affiliation:
Electrical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt, 21544
*
*Corresponding author: E-mail: iham_zidane@aast.edu

Abstract

Because of the increasing use of laparoscopic surgeries, robotic technologies have been developed to overcome the challenges these surgeries impose on surgeons. This paper presents an overview of the current state of surgical robots used in laparoscopic surgeries. Four main categories were discussed: handheld laparoscopic devices, laparoscope positioning robots, master–slave teleoperated systems with dedicated consoles, and robotic training systems. A generalized control block diagram is developed to demonstrate the general control scheme for each category of surgical robots. In order to review these robotic technologies, related published works were investigated and discussed. Detailed discussions and comparison tables are presented to compare their effectiveness in laparoscopic surgeries. Each of these technologies has proved to be beneficial in laparoscopic surgeries.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Queirós, S. F., Vilaça, J. L., Rodrigues, N. F., Neves, S. C., Teixeira, P. M. and Correia-Pinto, J., “A Laparoscopic Surgery Training Interface,” In: 2011 IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH) (2011) pp. 17.Google Scholar
Agha, R. and Muir, G., “Does laparoscopic surgery spell the end of the open surgeon?,” J. R. Soc. Med. 96(11), 544546 (2003).CrossRefGoogle ScholarPubMed
Sánchez-Margallo, F. M., Sánchez-Margallo, J. A. and Usón, J., “Introductory Chapter: Addressing the Challenges of Laparoscopic Surgery,” In: Recent Advances in Laparoscopic Surgery Sanchez-Margallo, (F. M., ed.) (IntechOpen, 2019).CrossRefGoogle Scholar
Das, A., Shirwalkar, V. and Kar, D. C., “Robotic Camera Assistant for Laparoscopic Surgery,” In: National Symposium on nuclear Instrumentation (Mubai, India, 2010).Google Scholar
Li, S., Zhang, J., Xue, L., Kim, F. J. and Zhang, X., “Attention-Aware Robotic Laparoscope for Human-Robot Cooperative Surgery,” In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO) (2013) pp. 792797.Google Scholar
Saing, V., Sotthivirat, S., Vilasrussamee, R. and Suthakorn, J., “Design of A New Laparoscopic-Holder Assisting Robot,” In: Biomedical Engineering (ISBME) (2008) pp. 278281.Google Scholar
Beasley, R. A., “Medical robots: Current systems and research directions,” J. Robot. 2012(2), 114 (2012).CrossRefGoogle Scholar
Lanfranco, A. R., Castellanos, A. E., Desai, J. P. and Meyers, W. C., “Robotic surgery: A current perspective,” Ann. Surg. 239(1), 1421 (2004).CrossRefGoogle ScholarPubMed
Kalan, S., Chauhan, S., Coelho, R. F., Orvieto, M. A., Camacho, I. R., Palmer, K. J. and Patel, V. R., “History of robotic surgery,” J. Robot. Surg. 4(3), 141147 (2010).CrossRefGoogle ScholarPubMed
Kawashima, K., Kanno, T. and Tadano, K., “Robots in laparoscopic surgery: Current and future status,” BMC Biomed. Eng. 1(1), 16 (2019).CrossRefGoogle ScholarPubMed
Bihlmaier, A., “Endoscope Robots and Automated Camera Guidance,” In: Learning Dynamic Spatial Relations (Springer Vieweg, 2016) pp. 23–102.CrossRefGoogle Scholar
Jaspers, J. E., Breedveld, P., Herder, J. L. and Grimbergen, C. A., “Camera and instrument holders and their clinical value in minimally invasive surgery,” Surg. Laparosc. Endosc. Percutan. Tech. 14(3), 145152 (2004).CrossRefGoogle ScholarPubMed
Pandya, A., Reisner, L. A., King, B., Lucas, N., Composto, A., Klein, M. and Ellis, R. D., “A review of camera viewpoint automation in robotic and laparoscopic surgery,” Robotics 3(3), 310329 (2014).CrossRefGoogle Scholar
Taniguchi, K., Nishikawa, A., Sekimoto, M., Kobayashi, T., Kazuhara, K., Ichihara, T., Kurashita, N., Takiguchi, S., Doki, Y., Mori, M., Miyazaki, F., “Classification, design and evaluation of endoscope robots,” Robot Surg. 1, 172 (2010).Google Scholar
Sood, H. S., Arya, M., Maple, H., Grange, P. and Haq, A., “Robotic telemanipulating surgical systems for laparoscopy: The story so far in the UK,” Exp. Rev. Med. Dev. 7(6), 745752 (2010).CrossRefGoogle ScholarPubMed
Cisu, T., Crocerossa, F., Carbonara, U., Porpiglia, F. and Autorino, R., “New robotic surgical systems in urology: An update,” Curr. Opin. Urol. 31(1), 3742 (2021).CrossRefGoogle ScholarPubMed
Longmore, S. K., Naik, G. and Gargiulo, G. D., “Laparoscopic robotic surgery: Current perspective and future directions,” Robotics 9(2), 42 (2020).CrossRefGoogle Scholar
Koukourikis, P. and Rha, K. H., “Robotic surgical systems in urology: What is currently available?,” Investig. Clin. Urol. 62(1), 14 (2021).CrossRefGoogle ScholarPubMed
Payne, C. J. and Yang, G.-Z., “Hand-held medical robots,” Ann. Biomed. Eng. 42(8), 15941605 (2014).CrossRefGoogle ScholarPubMed
Sánchez-Margallo, F. M., Sánchez-Margallo, J. A. and Szold, A., “Handheld Devices for Laparoscopic Surgery,” In: New Horizons in Laparoscopic Surgery (M. F. Ferhatoglu, ed.) (IntechOpen, London, 2018) pp. 75.Google Scholar
Bensignor, T., Morel, G., Reversat, D., Fuks, D. and Gayet, B., “Evaluation of the effect of a laparoscopic robotized needle holder on ergonomics and skills,” Surg. Endosc. 30(2), 446454 (2016).CrossRefGoogle ScholarPubMed
Focacci, F., Piccigallo, M., Tonet, O., Megali, G., Pietrabissa, A. and Dario, P., “Lightweight Hand-held Robot for Laparoscopic Surgery,” In: Proceedings 2007 IEEE International Conference on Robotics and Automation (2007) pp. 599604.Google Scholar
Iacoponi, S., Terán, M., De Santiago, J. and Zapardiel, I., “Laparoscopic hysterectomy with a handheld robotic device in a case of uterine sarcoma,” Taiwan J. Obstet. Gyne. 54(1), 8485 (2015).CrossRefGoogle Scholar
Jinno, M., Matsuhira, N., Sunaoshi, T., Hato, T., Miyagawa, T., Morikawa, Y., Furukawa, T., Ozawa, S., Kitajima, M., Nakazawa, K., “Development of A Master Slave Combined Manipulator for Laparoscopic Surgery,” In: Medical Image Computing and Computer-Assisted Intervention — MICCAI (T. Dohi and R. Kikinis, eds.) (Springer Berlin, Heidelberg, 2002) pp. 5259.CrossRefGoogle Scholar
Matsuhira, N., Jinno, M., Miyagawa, T., Sunaoshi, T., Hato, T., Morikawa, Y., Furukawa, T., Ozawa, S., Kitajima, M., Nakazawa, K., “Development of a functional model for a master-slave combined manipulator for laparoscopic surgery,” Adv. Robot. 17(6), 523539 (2003).CrossRefGoogle Scholar
Miyazaki, R., Hirose, K., Ishikawa, Y., Kanno, T. and Kawashima, K., “A master-slave integrated surgical robot with active motion transformation using wrist axis,” IEEE/ASME Trans. Mechatron. 23(3), 12151225 (2018).CrossRefGoogle Scholar
Sánchez-Margallo, J. A. and Sánchez-Margallo, F. M., “Initial experience using a robotic-driven laparoscopic needle holder with ergonomic handle: assessment of surgeons’ task performance and ergonomics,” Int. J. Comput. Ass. Rad. 12(12), 20692077 (2017).Google ScholarPubMed
Sieber, M. A., Fellmann-Fischer, B. and Mueller, M., “Performance of kymerax© precision-drive articulating surgical system compared to conventional laparoscopic instruments in a pelvitrainer model,” Surg. Endosc. 31(10), 42984308 (2017).Google Scholar
Siri, E., Crochet, P., Charavil, A., Netter, A., Resseguier, N. and Agostini, A., “Learning intracorporeal suture on pelvitrainer using a robotized versus conventional needle holder,” J. Surg. Res. 251(Suppl. 1), 8593 (2020).CrossRefGoogle ScholarPubMed
Madec, F.-X., Dariane, C. and Cornu, J.-N., “Evaluation and comparison of basic gestures in ex vivo laparoscopic surgery using a robotic instrument and traditional laparoscopic instruments,” Prog. Urol. 30(1), 5863 (2020).CrossRefGoogle ScholarPubMed
Rassweiler, J. J. and Teber, D., “Advances in laparoscopic surgery in urology,” Nat. Rev. Urol. 13(7), 387399 (2016).CrossRefGoogle ScholarPubMed
Uysal, D., Gasch, C., Behnisch, R., Nickel, F., Müller-Stich, B. P., Hohenfellner, M. and Teber, D., “Evaluation of new motorized articulating laparoscopic instruments by laparoscopic novices using a standardized laparoscopic skills curriculum,” Surg. Endosc. 35(2), 979988 (2021).CrossRefGoogle ScholarPubMed
Feng, J., Yang, K., Zhang, Z., Li, M., Chen, X., Yan, Z., Du, Z. and Wang, X., “Handheld laparoscopic robotized instrument: Progress or challenge?,” Surg. Endosc. 34(2), 719727 (2020).CrossRefGoogle ScholarPubMed
Feng, J., Yan, Z., Li, M., Zhang, Z., Chen, X., Du, Z. and Yang, K., “Handheld Robotic Needle Holder Training: Slower but Better,” In: Surgical Endoscopy (2020) pp. 18.Google Scholar
Li, M., Kapoor, A. and Taylor, R. H., “Telerobotic Control By Virtual Fixtures for Surgical Applications,” In: Advances in Telerobotics (Springer, 2007) pp. 381401.Google Scholar
Selvaggio, M., Fontanelli, G. A., Ficuciello, F., Villani, L. and Siciliano, B., “Passive virtual fixtures adaptation in minimally invasive robotic surgery,” IEEE Robot. Automat. Lett. 3(4), 31293136 (2018).CrossRefGoogle Scholar
Colan, J., Nakanishi, J., Aoyama, T. and Hasegawa, Y., “A cooperative human-Robot interface for constrained manipulation in robot-Assisted endonasal surgery,” Appl. Sci. 10(14), 4809 (2020).CrossRefGoogle Scholar
Yamaguchi, T., Nakamoto, M., Sato, Y., Nakajima, Y., Konishi, K., Hashizume, M., Nishii, T., Sugano, N., Yoshikawa, H., Yonenobu, K., “Camera Model and Calibration Procedure for Oblique-Viewing Endoscope,” In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2003) pp. 373381.Google Scholar
Münzer, B., Schoeffmann, K. and Böszörmenyi, L., “Content-based processing and analysis of endoscopic images and videos: A survey,” Multimed. Tools Appl. 77(1), 13231362 (2018).CrossRefGoogle Scholar
Wu, C. and Jaramaz, B., “An Easy Calibration for Oblique-Viewing Endoscopes,” In: 2008 IEEE International Conference on Robotics and Automation (2008) pp. 14241429.Google Scholar
Liu, X., Rice, C. E. and Shekhar, R., “Fast calibration of electromagnetically tracked oblique-viewing rigid endoscopes,” Int. J. Comput. Ass. Rad. 12(10), 16851695 (2017).Google ScholarPubMed
Wu, C., Jaramaz, B. and Narasimhan, S., “A full geometric and photometric calibration method for oblique-viewing endoscopes,” Comput. Aided Surg. 15(1-3), 1931 (2010).CrossRefGoogle ScholarPubMed
Kraft, B. M., Jäger, C., Kraft, K., Leibl, B. J. and Bittner, R., “The AESOP robot system in laparoscopic surgery: Increased risk or advantage for surgeon and patient?,” Surg. Endosc. 18(8), 12161223 (2004).Google ScholarPubMed
Pisla, D., Plitea, N., Vaida, C., Hesselbach, J., Raatz, A., Vlad, L., Graur, F., Gyurka, B., Gherman, B., Suciu, M., “PARAMIS parallel robot for laparoscopic surgery,” Chirurgia 105(5), 677683 (2010).Google ScholarPubMed
Vaida, C., Pisla, D., Plitea, N., Gherman, B., Gyurka, B., Stancel, E., Hesselbach, J., Raatz, A., Vlad, L., Graur, F., “Development of A Control System for A Parallel Robot Used in Minimally Invasive Surgery,” In: International Conference on Advancements of Medicine and Health Care through Technology (2009) pp. 171176.Google Scholar
Mendivil, A., Holloway, R. W. and Boggess, J. F., “Emergence of robotic assisted surgery in gynecologic oncology: American perspective,” Gynecol. Oncol. 114(2), S24S31 (2009).Google ScholarPubMed
Nerli, R. B., Reddy, M. N. and Chowdhary, S. K., “42 The Asian Continent: Is It Ready for New Technology? An Indian Perspective,” In: Pediatric Robotic and Reconstructive Urology (Gundeti, ed.), M. S. (John Wiley & Sons, 2012) pp. 305.Google Scholar
Chatzilias, P., Kamarianakis, Z., Golemati, S. and Christodoulou, M., “Robotic Control in Hand-Assisted Laparoscopic Nephrectomy in Humans - A Pilot Study,” In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (San Francisco, USA, 2004) pp. 27422745.Google Scholar
Mettler, L., Ibrahim, M. and Jonat, W., “One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic surgery,” Human Reprod. (Oxford, England) 13(10), 27482750 (1998).CrossRefGoogle ScholarPubMed
Weghorst, S. J., Sieburg, H. B. and Morgan, K. S., Medicine Meets Virtual Reality: Health Care in the Information Age (IOS Press, 1996).Google Scholar
Jacobs, L. K., Shayani, V. and Sackier, J. M., “Determination of the learning curve of the AESOP robot,” Surg. Endosc. 11(1), 5455 (1997).CrossRefGoogle ScholarPubMed
Takahashi, M., “5 - Solo Surgery With VIKY: Safe, Simple, and Low-Cost Robotic Surgery,” In: Handbook of Robotic and Image-Guided Surgery Abedin-Nasab, ed.), (M. H. (Elsevier, 2020) pp. 7988.Google Scholar
Voros, S., Haber, G.-P., Menudet, J.-F., Long, J.-A. and Cinquin, P., “ViKY robotic scope holder: initial clinical experience and preliminary results using instrument tracking,” IEEE/ASME Trans. Mechatron. 15(6), 879886 (2010).Google Scholar
Plitea, N., Hesselbach, J., Vaida, C., Raatz, A., Pisla, D., Budde, C., Vlad, L., Burisch, A. and Senner, R., “Innovative development of surgical parallel robots,” Acta Electronica, Mediamira Science, Cluj-Napoca 4, 201206 (2007).Google Scholar
Ornstein, M. H., “Experience with A Surgical Telemanipulator,” In: IEE Colloquium on Towards Telesurgery (1995) pp. 831 11–16.Google Scholar
Finlay, P. A., “Robotic Controlled Endoscopic Manipulator,” In: IEE Colloquium on Technological Advances in Therapeutic Urology (1996) pp. 9193.Google Scholar
Dowler, N. J. and Holland, S. R. J., “The evolutionary design of an endoscopic telemanipulator,” IEEE Robot. Autom. Mag. 3(4), 3845 (1996).CrossRefGoogle Scholar
Finlay, P. A. and Ornstein, M. H., “Controlling the movement of a surgical laparoscope,” IEEE Eng. Med. Biol. 14(3), 289291 (1995).CrossRefGoogle Scholar
Gilbert, J., “The EndoAssistTM robotic camera holder as an aid to the introduction of laparoscopic colorectal surgery,” Ann. Roy. Coll. Surg. Engl. 91(5), 389393 (2009).CrossRefGoogle Scholar
Rane, A., Eddy, B., Kommu, S., Anderson, C. and Rimington, P., “Initial laboratory experience with the freehand® camera holding robotic arm in laparoscopic urological surgery,” J. Endourol. 21, MP13 (2007).Google Scholar
Stolzenburg, J. U., Franz, T., Kallidonis, P., Minh, D., Dietel, A., Hicks, J., Nicolaus, M., Al-Aown, A. and Liatsikos, E., “Comparison of the FreeHand® robotic camera holder with human assistants during endoscopic extraperitoneal radical prostatectomy,” BJU Int. 107(6), 970974 (2011).CrossRefGoogle ScholarPubMed
Finlay, P. A., “A New Miniature Manipulator for Laparoscopic Camera Control,” In: World Congress on Medical Physics and Biomedical Engineering, (Munich, Germany September 7-12, 2009) pp. 124127.Google Scholar
Sapalidis, K., Michalopoulos, N., Mantalovas, S. and Kesisoglou, I., “Laparoscopic cholecystectomy with freehand laparoscopic camera controller,” Curr. Health Sci. J. 43(2), 159 (2017).Google ScholarPubMed
Yoshida, D., Maruyama, S., Takahashi, I., Matsukuma, A. and Kohnoe, S., “Surgical experience of using the endoscope manipulator robot EMARO in totally extraperitoneal inguinal hernia repair: a case report,” Asian J. Endosc. Surg. 13(3), 448452 (2020).CrossRefGoogle ScholarPubMed
Tadano, K. and Kawashima, K., “A pneumatic laparoscope holder controlled by head movement,” Int. J. Med. Robot. Comput. Assist. Surg. 11(3), 331340 (2015).CrossRefGoogle ScholarPubMed
Zhang, X. and Payandeh, S., “Application of visual tracking for robot-assisted laparoscopic surgery,” J. Robot. Syst. 19, 315328 (2002).CrossRefGoogle Scholar
Zhao, Z., “Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder,” Bio-Med. Mater. Eng. 24(6), 26652672 (2014).CrossRefGoogle ScholarPubMed
Kim, J., Lee, Y.-J., Ko, S. Y., Kwon, D.-S. and Lee, W.-J., “Compact Camera Assistant Robot for Minimally Invasive Surgery: KaLAR,” In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,Sendai, Japan, 2004) pp. 25872592.Google Scholar
Lee, Y.-J., Kim, J. and Ko, S.-Y., “Design of a compact laparoscopic assistant robot: KaLAR,” 26482653 (2003).Google Scholar
Zemiti, N., Morel, G., Ortmaier, T. and Bonnet, N., “Mechatronic design of a new robot for force control in minimally invasive surgery,” IEEE/ASME Trans. Mechatron. 12(2), 143153 (2007).CrossRefGoogle Scholar
Shin, W.-H., Ko, S.-Y. and Kwon, D.-S., “Design of A Dexterous and Compact Laparoscopic Assistant Robot,” In: 2006 SICE-ICASE International Joint Conference (2006) pp. 233237.Google Scholar
Khoiy, K. A., Mirbagheri, A. and Farahmand, F., “Automatic tracking of laparoscopic instruments for autonomous control of a cameraman robot,” Minim. Invasiv. Ther. 25(3), 121128 (2016).CrossRefGoogle ScholarPubMed
Climent, J. and Mares, P., “Automatic instrument localization in laparoscopic surgery,” ELCVIA Electron. Lett. Comput. Vis. Image Anal. 4(1), 2131 (2004).CrossRefGoogle Scholar
Dutkiewicz, P., Kielczewski, M. and Kowalski, M., “Visual Tracking of Surgical Tools for Laparoscopic Surgery,” In: Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No. 04EX891) (2004) pp. 23–28.CrossRefGoogle Scholar
Dutkiewicz, P., Kietczewski, M., Kowalski, M. and Wroblewski, W., “Experimental Verification of Visual Tracking of Surgical Tools,” In: Proceedings of the Fifth International Workshop on Robot Motion and Control (2005) pp. 237242.Google Scholar
Doignon, C., Graebling, P. and de Mathelin, M., “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imag. 11(5), 429442 (2005).CrossRefGoogle Scholar
Voros, S., Long, J.-A. and Cinquin, P., “Automatic detection of instruments in laparoscopic images: a first step towards high-level command of robotic endoscopic holders,” Int. J. Robot. Res. 26(11-12), 11731190 (2007).Google Scholar
Zhang, J. and Gao, X., “Object extraction via deep learning-based marker-free tracking framework of surgical instruments for laparoscope-holder robots,” Int. J. Comput. Ass. Rad. 15(8), 13351345 (2020).Google ScholarPubMed
Wesierski, D., Wojdyga, G. and Jezierska, A., “Instrument Tracking with Rigid Part Mixtures Model,” In: Computer-Assisted and Robotic Endoscopy (2015) pp. 2234.Google Scholar
Reiter, A., Allen, P. K. and Zhao, T., “Feature Classification for Tracking Articulated Surgical Tools,” In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2012) pp. 592600.Google Scholar
Allan, M., Thompson, S., Clarkson, M. J., Ourselin, S., Hawkes, D. J., Kelly, J. and Stoyanov, D., “2D-3D Pose Tracking of Rigid Instruments in Minimally Invasive Surgery,” In: International Conference on Information Processing in Computer-Assisted Interventions (2014) pp. 110.Google Scholar
Du, X., Allan, M., Dore, A., Ourselin, S., Hawkes, D., Kelly, J. D. and Stoyanov, D., “Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery,” Int. J. Comput. Ass. Rad. 11(6), 11091119 (2016).Google ScholarPubMed
Islam, M., Atputharuban, D. A., Ramesh, R. and Ren, H., “Real-time instrument segmentation in robotic surgery using auxiliary supervised deep adversarial learning,” IEEE Robot. Automat. Lett. 4(2), 21882195 (2019).Google Scholar
Zhao, Z., Voros, S., Weng, Y., Chang, F. and Li, R., “Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method,” Comput. Assist. Surg. 22(Suppl. 1), 2635 (2017).CrossRefGoogle ScholarPubMed
Attia, M., Hossny, M., Nahavandi, S. and Asadi, H., “Surgical Tool Segmentation Using A Hybrid Deep CNN-RNN Auto Encoder-Decoder,” In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2017) pp. 33733378.Google Scholar
Chen, Z., Zhao, Z. and Cheng, X., “Surgical Instruments Tracking Based on Deep Learning with Lines Detection and Spatio-Temporal Context,” In: 2017 Chinese Automation Congress (CAC) (2017) pp. 27112714.CrossRefGoogle Scholar
Zhao, Z., Cai, T., Chang, F. and Cheng, X., “Real-time surgical instrument detection in robot-assisted surgery using a convolutional neural network cascade,” Healthcare Technol. Lett. 6(6), 275279 (2019).CrossRefGoogle ScholarPubMed
Garcia-Peraza-Herrera, L. C., Gruijthuijsen, C., Borghesan, G., Reynaerts, D., Deprest, J., Ourselin, S., Vercauteren, T. and Poorten, E. V., “Robotic Endoscope Control Via Autonomous Instrument Tracking,” In: Frontiers in Robotics and AI (2022).Google Scholar
Garcia-Peraza-Herrera, L. C., Li, W., Fidon, L., Gruijthuijsen, C., Devreker, A., Attilakos, G., Deprest, J., Poorten, E. V., Stoyanov, D., Vercauteren, T., “Toolnet: Holistically-Nested Real-Time Segmentation of Robotic Surgical Tools,” In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017) pp. 57175722.Google Scholar
Shvets, A. A., Rakhlin, A., Kalinin, A. A. and Iglovikov, V. I., “Automatic Instrument Segmentation in Robot-Assisted Surgery Using Deep Learning,” In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) (2018) pp. 624628.Google Scholar
MICCAI, Endoscopic Vision Challenge: Robotic Instrument Segmentation Sub-Challenge (2017).Google Scholar
Eslamian, S., Reisner, L. A., King, B. W. and Pandya, A. K., “An autonomous camera system using the da vinci research kit,” In: Proceedings 2017 International Conference on Intelligent Robots and Systems (IROS) (2017) p. 2.Google Scholar
Weede, O., Mönnich, H., Müller, B. and Wörn, H., “An Intelligent and Autonomous Endoscopic Guidance System for Minimally Invasive Surgery,” In: 2011 IEEE International Conference on Robotics and Automation (2011) pp. 57625768.Google Scholar
Ko, S.-Y. and Kwon, D.-S., “A Surgical Knowledge based Interaction Method for a Laparoscopic Assistant Robot,” In: 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No. 04TH8759) (2004) pp. 313–318.Google Scholar
Bihlmaier, A. and Worn, H., “Learning Surgical Know-How: Dexterity for A Cognitive Endoscope Robot,” In: 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM) (2015) pp. 137142.Google Scholar
Ji, J. J., Krishnan, S., Patel, V., Fer, D. and Goldberg, K., “Learning 2D Surgical Camera Motion From Demonstrations,” In: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE) (2018) pp. 3542.Google Scholar
Rivas-Blanco, I., Perez-del-Pulgar, C. J., López-Casado, C., Bauzano, E. and Muñoz, V. F., “Transferring Know-How for an autonomous camera robotic assistant,” Electronics 8(2), 224 (2019).CrossRefGoogle Scholar
Berkelman, P. and Ma, J., “A compact modular teleoperated robotic system for laparoscopic surgery,” Int. J. Robot. Res. 28(9), 11981215 (2009).CrossRefGoogle ScholarPubMed
Franzino, R. J., “The laprotek surgical system and the next generation of robotics,” Surg. Clin. North America 83(6), 13171320 (2003).CrossRefGoogle ScholarPubMed
Lum, M. J., Trimble, D., Rosen, J., Fodero, K., King, H. H., Sankaranarayanan, G., Dosher, J., Leuschke, R., Martin-Anderson, B., Sinanan, M. N., “Multidisciplinary Approach for Developing A New Minimally Invasive Surgical Robotic System,” In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (2006) pp. 841846.Google Scholar
Ma, J. and Berkelman, P., “Task Evaluations of A Compact Laparoscopic Surgical Robot System,” In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (2007) pp. 398403.Google Scholar
Marescaux, J. and Rubino, F., “The ZEUS robotic system: Experimental and clinical applications,” Surg. Clin. 83(6), 13051315 (2003).Google ScholarPubMed
Nakadate, R. and Hashizume, M., “Intelligent Information-Guided Robotic Surgery,” In: Recent Advances in Laparoscopic Surgery (Sanchez-Margallo, ed.) (IntechOpen, F. M., London, 2018).Google Scholar
Rao, P. P., “Robotic surgery: New robots and finally some real competition!,” World J. Urol. 36(4), 537541 (2018).CrossRefGoogle ScholarPubMed
Suzuki, T., Aoki, E., Kobayashi, E., Tsuji, T., Konishi, K., Hashizume, M. and Sakuma, I., “Development of Master-Slave Robotic System for Laparoscopic Surgery,” In: Mechatronics for Safety, Security and Dependability in A New Era Arai, (E. and Arai, eds.), T. (Elsevier, 2007) pp. 57–62.Google Scholar
Pan, B., Qu, X., Ai, Y., Fu, Y. and Liu, C., “Master-slave real-time control strategy in Cartesian space for a novel surgical robot for minimally invasive surgery,” Comput. Assist. Surg. 21(Suppl. 1), 6977 (2016).CrossRefGoogle Scholar
Ruurda, J., Van Vroonhoven, T. J. and Broeders, I., “Robot-assisted surgical systems: a new era in laparoscopic surgery,” Ann. Roy. Coll. Surg. 84(4), 223226 (2002).CrossRefGoogle ScholarPubMed
Eto, M. and Naito, S., Robotic Surgery Assisted by the ZEUS System (Springer, Tokyo, 2005) pp. 3948.Google Scholar
Boyd, W. D., Kiaii, B., Kodera, K., Rayman, R., Abu-Khudair, W., Fazel, S., Dobkowski, W. B., Ganapathy, S., Jablonsky, G., Novick, R. J., “Early experience with robotically assisted internal thoracic artery harvest,” Surg. Laparosc. Endosc. Percut. Techniq. 12(1), 5257 (2002).CrossRefGoogle ScholarPubMed
Detter, C., Boehm, D. H., Reichenspurner, H., Deuse, T., Arnold, M. and Reichart, B., “Robotically-assisted coronary artery surgery with and without cardiopulmonary bypass - from first clinical use to endoscopic operation,” Med. Sci. Monitor 8(7), Mt118–123 (2002).Google ScholarPubMed
Bret, E. L., Papadatos, S., Folliguet, T., Carbognani, D., Pétrie, J., Aggoun, Y., Batisse, A., Bachet, J. and Laborde, F., “Interruption of patent ductus arteriosus in children: robotically assisted versus videothoracoscopic surgery,” J. Thor. Cardiovas. Surg. 123(5), 973976 (2002).CrossRefGoogle ScholarPubMed
Prasad, S. M., Ducko, C. T., Stephenson, E. R., Chambers, C. E. and Damiano, R. J. Jr, “Prospective clinical trial of robotically assisted endoscopic coronary grafting with 1-year follow-up,” Ann. Surg. 233(6), 725732 (2001).Google ScholarPubMed
Reichenspurner, H., Damiano, R. J., Mack, M., Boehm, D. H., Gulbins, H., Detter, C., Meiser, B., Ellgass, R. and Reichart, B., “Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery bypass grafting,” J. Thor. Cardiovas. Surg. 118(1), 1116 (1999).CrossRefGoogle ScholarPubMed
Goh, P. M. Y., Lomanto, D. and So, J. B. Y., “Robotic-assisted laparoscopic cholecystectomy,” Surg. Endosc. 16(1), 216217 (2002).CrossRefGoogle ScholarPubMed
Marescaux, J., Smith, M. K., Fölscher, D., Jamali, F., Malassagne, B. and Leroy, J., “Telerobotic laparoscopic cholecystectomy: initial clinical experience with 25 patients,” Ann. Surg. 234(1), 17 (2001).CrossRefGoogle ScholarPubMed
White, P., Carbajal-Ramos, A., Gracia, C., Nunez-Gonzales, E., Bailey, R., Broderick, T., DeMaria, E., Hollands, C. and Soper, N., “A Prospective Randomised Study of the Zeus Robotic Surgical System for Laparoscopic Anti-Reflux Surgery,” In: Proceedings of the SAGES, 2003 Meeting, Los Angeles, CA (March 2003) pp. 1215.Google Scholar
Zhou, H., Guo, Y., Xiaofang, Y., Bao, S., Liu, J., Zhang, Y., Ren, Y. and Zheng, Q., “Zeus robot-assisted laparoscopic cholecystectomy in comparison with manual laparoscopic cholecystectomy,” Chin. J. Gen. Surg. 6, 115–118 (1997).Google Scholar
Zhou, H., Yu, X., Li, F., Bao, S., Liu, J., Zhang, Y., Ren, Y., Wei, A., Zheng, Q., Huang, J., “Laparoscopic cholecystectomy with remote Zeus surgical robotic system: Report of 16 cases,” Zhonghua Yi Xue Za Zhi 85(3), 154157 (2005).Google ScholarPubMed
Falcone, T., Goldberg, J., Garcia-Ruiz, A., Margossian, H. and Stevens, L., “Full robotic assistance for laparoscopic tubal anastomosis: A case report,” J. Laparoendosc. Adv. Surg Tech. 9(1), 107113 (1999).CrossRefGoogle ScholarPubMed
Falcone, T., Goldberg, J. M., Margossian, H. and Stevens, L., “Robotic-assisted laparoscopic microsurgical tubal anastomosis: A human pilot study,” Fertil. Steril. 73(5), 10401042 (2000).CrossRefGoogle ScholarPubMed
Guillonneau, B., CappÈLe, O., Martinez, J. B., Navarra, S. and Vallancien, G. U. Y., “Robotic assisted, laparoscopic pelvic lymph node dissection in humans,” J. Urol. 165(4), 10781081 (2001).Google ScholarPubMed
Guillonneau, B., Jayet, C., Tewari, A. and Vallancien, G., “Robot assisted laparoscopic nephrectomy,” J. Urol. 166(1), 200201 (2001).CrossRefGoogle ScholarPubMed
Yates, D. R., Vaessen, C. and Roupret, M., “From Leonardo to da vinci: the history of robot-assisted surgery in urology,” BJU Int. 108(11), 17081713 (2011).CrossRefGoogle Scholar
Palep, J. H., “Robotic assisted minimally invasive surgery,” J. Minim. Access Surg. 5(1), 1 (2009).Google ScholarPubMed
Koh, D. H., Jang, W. S., Park, J. W., Ham, W. S., Han, W. K., Rha, K. H. and Choi, Y. D., “Efficacy and safety of robotic procedures performed using the da Vinci robotic surgical system at a single institute in Korea: experience with 10000 cases,” Yonsei Med. J. 59(8), 975981 (2018).CrossRefGoogle Scholar
Rassweiler, J. J., Autorino, R., Klein, J., Mottrie, A., Goezen, A. S., Stolzenburg, J. U., Rha, K. H., Schurr, M., Kaouk, J., Patel, V., “Future of robotic surgery in urology,” BJU Int. 120(6), 822841 (2017).CrossRefGoogle ScholarPubMed
Gueli, A., Perrone, E., Cianci, S., Rossitto, C., Monterossi, G., Bernardini, F. and Scambia, G., “3 mm senhance robotic hysterectomy: a step towards future perspectives,” J. Robot. Surg. 12(3), 575577 (2018).CrossRefGoogle Scholar
Hutchins, A. R., Manson, R. J., Lerebours, R., Farjat, A. E., Cox, M. L., Mann, B. P. and Zani, S., “Objective assessment of the early stages of the learning curve for the senhance surgical robotic system,” J. Surg. Educ. 76(1), 201214 (2019).CrossRefGoogle ScholarPubMed
TransEnterix receives FDA clearance for first machine vision system in robotic surgery (2020).Google Scholar
Brodie, A. and Vasdev, N., “The future of robotic surgery,” Ann. Royal Coll. Surg. Engl. 100(Suppl. 7), 413 (2018).CrossRefGoogle ScholarPubMed
Franz, T., Rassweiler, J. J., Liatsikos, E., Kyriazis, I., Bach, T., Siemer, S., Yanev, K. and Stolzenburg, J.-U., “Roboterassistierte Systeme der Zukunft,” Uro-News 23(3), 3034 (2019).CrossRefGoogle Scholar
Alabdulaali, I. and Rha, K. H., “Newer Robotic Systems in Horizon for Clinical Use,” In: Robotics in Genitourinary Surgery (Springer, 2018) pp. 935940.Google Scholar
Hagn, U., Konietschke, R., Tobergte, A., Nickl, M., Jörg, S., Kübler, B., Passig, G., Gröger, M., Fröhlich, F., Seibold, U., “DLR MiroSurge: a versatile system for research in endoscopic telesurgery,” Int. J. Comput. Ass. Rad. Surg. 5(2), 183193 (2010).CrossRefGoogle ScholarPubMed
Konietschke, R., Hagn, U., Nickl, M., Jorg, S., Tobergte, A., Passig, G., Seibold, U., Le-Tien, L., Kubler, B., Groger, M., “The DLR MiroSurge-A Robotic System for Surgery,” In: 2009 IEEE International Conference on Robotics and Automation (2009) pp. 15891590.Google Scholar
Gözen, A. and Rassweiler, J., Robotische Chirurgie in der Urologie (Springer Medizin, Heidelberg, 2020) pp. 15.Google Scholar
Hu, J. C. and Shoag, J., Robotic Urology: The Next Frontier, an Issue of Urologic Clinics, E-Book (Elsevier, 2020).CrossRefGoogle Scholar
Yi, B., Wang, G., Li, J., Jiang, J., Son, Z., Su, H. and Zhu, S., “The first clinical use of domestically produced chinese minimally invasive surgical robot system “Micro hand S”,” Surg. Endosc. 30(6), 26492655 (2016).Google ScholarPubMed
Yi, B., Wang, G., Li, J., Jiang, J., Son, Z., Su, H., Zhu, S. and Wang, S., “Domestically produced chinese minimally invasive surgical robot system, micro hand S, is applied to clinical surgery preliminarily in China,” Surg. Endosc. 31(1), 487493 (2017).CrossRefGoogle Scholar
Li, J., Zhu, S., Juan, J. and Yi, B., “Preliminary exploration of robotic complete mesocolic excision for colon cancer with the domestically produced Chinese minimally invasive Micro Hand S surgical robot system,” Int. J. Med. Robot. Comput. Assist. Surg. 16(6), 18 (2020).Google ScholarPubMed
Trastulli, S., Coratti, A., Guarino, S., Piagnerelli, R., Annecchiarico, M., Coratti, F., Di Marino, M., Ricci, F., Desiderio, J., Cirocchi, R., “Robotic right colectomy with intracorporeal anastomosis compared with laparoscopic right colectomy with extracorporeal and intracorporeal anastomosis: a retrospective multicentre study,” Surg. Endosc. 29(6), 15121521 (2015).CrossRefGoogle ScholarPubMed
Kaouk, J. H. and Bertolo, R., “Single-site robotic platform in clinical practice: first cases in the USA,” Minerva urologica e nefrologica 71(3), 294298 (2019).CrossRefGoogle ScholarPubMed
Van Abel, K. M., Yin, L. X., Price, D. L., Janus, J. R., Kasperbauer, J. L. and Moore, E. J., “One-year outcomes for da vinci single port robot for transoral robotic surgery,” Head & Neck 42(8), 20772087 (2020).CrossRefGoogle Scholar
Shin, H. J., Yoo, H. K., Lee, J. H., Lee, S. R., Jeong, K. and Moon, H.-S., “Robotic single-port surgery using the da vinci SP® surgical system for benign gynecologic disease: a preliminary report,” Taiwanese J. Obstetr. Gynecol. 59(2), 243247 (2020).CrossRefGoogle Scholar
Barret, E., V22 single-port radical prostatectomy with using SPORT surgical system (2018).CrossRefGoogle Scholar
Crouzet, S., “Single port robotic partial and hemi nephrectomy using a novel single port robotic platform: Pilot study in a pig model,” Eur. Urol. Suppl. 17(7), e2319 (2018).CrossRefGoogle Scholar
Seeliger, B., Diana, M., Ruurda, J. P., Konstantinidis, K. M., Marescaux, J. and Swanström, L. L., “Enabling single-site laparoscopy: the SPORT platform,” Surg. Endosc. 33(11), 36963703 (2019).CrossRefGoogle ScholarPubMed
Peters, B. S., Armijo, P. R., Krause, C., Choudhury, S. A. and Oleynikov, D., “Review of emerging surgical robotic technology,” Surg. Endosc. 32(4), 16361655 (2018).CrossRefGoogle ScholarPubMed
Piccigallo, M., Scarfogliero, U., Quaglia, C., Petroni, G., Valdastri, P., Menciassi, A. and Dario, P., “Design of a novel bimanual robotic system for single-port laparoscopy,” IEEE/ASME Transactions on mechatronics 15(6), 871878 (2010).Google Scholar
Sánchez, L. A., Petroni, G., Piccigallo, M., Scarfogliero, U., Niccolini, M., Liu, C., Stefanini, C., Zemiti, N., Menciassi, A., Poignet, P., “Real-Time Control and Evaluation of A Teleoperated Miniature Arm for Single Port Laparoscopy,” In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2011) pp. 70497053.Google Scholar
Petroni, G., Niccolini, M., Caccavaro, S., Quaglia, C., Menciassi, A., Schostek, S., Basili, G., Goletti, O., Schurr, M., Dario, P., “A novel robotic system for single-port laparoscopic surgery: Preliminary experience,” Surg. Endosc. 27(6), 19321937 (2013).CrossRefGoogle ScholarPubMed
Scarfogliero, U., Quaglia, C., Piccigallo, M., Tognarelli, S., Valdastri, P., Menciassi, A. and Dario, P., Robotic Apparatus for Minimally Invasive Surgery (Google Patents, 2015).Google Scholar
Derossis, A., Bothwell, J., Sigman, H. and Fried, G., “The effect of practice on performance in a laparoscopic simulator,” Surg. Endosc. 12(9), 11171120 (1998).CrossRefGoogle Scholar
Alaker, M., Wynn, G. R. and Arulampalam, T., “Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis,” Int. J. Surg. 29(1), 8594 (2016).Google ScholarPubMed
Larsen, C. R., Oestergaard, J., Ottesen, B. S. and Soerensen, J. L., “The efficacy of virtual reality simulation training in laparoscopy: a systematic review of randomized trials,” Acta Obstet. Gyn. Scan. 91(9), 10151028 (2012).CrossRefGoogle ScholarPubMed
Moglia, A., Ferrari, V., Morelli, L., Ferrari, M., Mosca, F. and Cuschieri, A., “A systematic review of virtual reality simulators for robot-assisted surgery,” Eur. Urol. 69(6), 10651080 (2016).Google ScholarPubMed
Yiannakopoulou, E., Nikiteas, N., Perrea, D. and Tsigris, C., “Virtual reality simulators and training in laparoscopic surgery,” Int. J. Surg. 13, 6064 (2015).CrossRefGoogle ScholarPubMed
Abboudi, H., Khan, M. S., Aboumarzouk, O., Guru, K. A., Challacombe, B., Dasgupta, P. and Ahmed, K., “Current status of validation for robotic surgery simulators - A systematic review,” BJU Int. 111(2), 194205 (2013).Google ScholarPubMed
Varras, M., Nikiteas, N., Varra, V. K., Varra, F. N., Georgiou, E. and Loukas, C., “Role of laparoscopic simulators in the development and assessment of laparoscopic surgical skills in laparoscopic surgery and gynecology,” World Acad. Sci. J. 2(2), 6576 (2020).Google Scholar
Chui, C. K., Chng, C. B., Yang, T., Wen, R., Huang, W., Liu, J., Su, Y. and Chang, S., “Learning Laparoscopic Surgery By Imitation Using Robot Trainer,” In: 2011 IEEE International Conference on Robotics and Biomimetics (2011) pp. 29812986.Google Scholar
Abdelaal, A. E., Sakr, M., Avinash, A., Mohammed, S., Bajwa, A., Sahni, M., Hor, S., Fels, S. and Salcudean, S., “Play me back: a unified training platform for robotic and laparoscopic surgery,” IEEE Robot. Automat. Lett. 4(2), 554561 (2018).CrossRefGoogle Scholar
Garudeswaran, S., Cho, S., Ohu, I. and Panahi, A. K., “Teach and playback training device for minimally invasive surgery,” Minim. Invas. Surg. 2018, 18 (2018, 2018).CrossRefGoogle ScholarPubMed
Lee, C. S., Yang, L., Yang, T., Chui, C. K., Liu, J., Huang, W., Su, Y. and Chang, S. K., “Designing an Active Motor Skill Learning Platform with A Robot-Assisted Laparoscopic Trainer,” In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Boston, Massachusetts, USA, 2011) pp. 45344537.Google Scholar
Prince, S. W., Kang, C., Simonelli, J., Lee, Y. H., Gerber, M. J., Lim, C., Chu, K., Dutson, E. P. and Tsao, T. C., “A robotic system for telementoring and training in laparoscopic surgery,” Int. J. Med. Robot. Comput. Assist. Surg. 16(2), e2040 (2020).CrossRefGoogle ScholarPubMed
Guthart, G. and Salisbury, J., “The Intuitive/sup TM/ Telesurgery System: Overview and Application,” In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation, vol. 1 (2000) pp. 618621.Google Scholar
Khandalavala, K., Shimon, T., Flores, L., Armijo, P. R. and Oleynikov, D., “Emerging surgical robotic technology: a progression toward microbots,” Ann. Laparosc. Endosc. Surg. 5, 3 (2019).CrossRefGoogle Scholar
Nelson, C. A., Laribi, M. A. and Zeghloul, S., “Multi-robot system optimization based on redundant serial spherical mechanism for robotic minimally invasive surgery,” Robotica 37(7), 12021213 (2019).Google Scholar
Simaan, N., Taylor, R. and Flint, P., “A Dexterous System for Laryngeal Surgery,” In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2004, vol. 1 (2004) pp. 351357.Google Scholar
Khalifa, A., Fanni, M., Mohamed, A. M. and Miyashita, T., “Development of a new 3-DOF parallel manipulator for minimally invasive surgery,” Int. J. Med. Robot. Comput. Assist. Surg. 14(3), e1901 (2018).CrossRefGoogle ScholarPubMed
Arata, J., Mitsuishi, M., Warisawa, S., Tanaka, K., Yoshizawa, T. and Hashizume, M., “Development of A Dexterous Minimally-Invasive Surgical System with Augmented Force Feedback Capability,” In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (2005) pp. 32073212.Google Scholar
Yamashita, H., Iimura, A., Aoki, E., Suzuki, T., Nakazawa, T., Kobayashi, E., Hashizume, M., Sakuma, I. and Dohi, T., “Development of Endoscopic Forceps Manipulator Using Multi-Slider Linkage Mechanisms,” In: Proceeding of The 1st Asian Symposium on Computer Aided Surgery-Robotic and Image guided Surgery (2005).Google Scholar
Ishii, C., Kobayashi, K., Kamei, Y. and Nishitani, Y., “Robotic forceps manipulator with a novel bending mechanism,” IEEE/ASME Trans. Mechatron. 15(5), 671684 (2009).Google Scholar
Röse, A., Wohlleber, C., Kassner, S., Schlaak, H. F. and Werthschützky, R., “A Novel Piezoelectric Driven Laparoscopic Instrument with Multiple Degree of Freedom Parallel Kinematic Structure,” In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009) pp. 21622167.Google Scholar
Pisla, D., Gherman, B., Vaida, C., Suciu, M. and Plitea, N., “An active hybrid parallel robot for minimally invasive surgery,” Robot. Comm.-Intrgr. Manuf. 29(4), 203221 (2013).CrossRefGoogle Scholar
Pisla, D., Plitea, N., Gherman, B., Vaida, C., Pisla, A. and Suciu, M., “Kinematics and Design of A 5-DOF Parallel Robot Used in Minimally Invasive Surgery,” In: Advances in Robot Kinematics: Motion in Man and Machine (Springer, 2010) pp. 99106.Google Scholar
Pisla, D., Gherman, B., Vaida, C. and Plitea, N., “Kinematic modelling of a 5-DOF hybrid parallel robot for laparoscopic surgery,” Robotica 30(7), 10951107 (2012).CrossRefGoogle Scholar
Tanev, T., Cammarata, A., Marano, D. and Sinatra, R., “Elastostatic Model of A New Hybrid Minimally-Invasive-surgery Robot,” In: The 14th IFToMM World Congr. (Taipei, Taiwan, 2015).Google Scholar
Ibrahim, K., Ramadan, A., Fanni, M., Kobayashi, Y., Abo-Ismail, A. and Fujie, M., “Development of a new 4-DOF endoscopic parallel manipulator based on screw theory for laparoscopic surgery,” Mechatronics 28(5), 417 (2015).CrossRefGoogle Scholar
Li, Y. and Xu, Q., “Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism,” Robotica 23(2), 219229 (2005).CrossRefGoogle Scholar
Fu, Y., Pan, B., Li, K. and Wang, S., “Laparoscopic Robot Design and Kinematic Validation,” In: 2006 IEEE International Conference on Robotics and Biomimetics (IEEE, Kunming, China, 2006) pp. 14261431.CrossRefGoogle Scholar
Petani, L., Scheikl, P. M. and Mathis-Ullrich, F., A mechatronic interface for using oblique-viewing endoscopes with light weight robots for laparoscopic surgery (2019).Google Scholar
Tzagkas, D., Gketsis, Z. E., Stavrakakis, G., Zervakis, M. E. and Hatzilias, P. V., “Simulation Model of Robotic Arm for Laparoscopic Surgery,” In: 2007 European Control Conference (ECC) (2007) pp. 31323138.Google Scholar
Kim, J., Ko, S. Y., Lee, W.-J. and Kwon, D.-S., “Intelligent Control of A Laparoscopic Assistant Robot Based on the Surgical Task Model,” In: World Congress on Medical Physics and Biomedical Engineering (Springer, 2007) pp. 3048–3051.Google Scholar
Ko, S. Y., Kim, J., Kwon, D.-S. and Lee, W.-J., “Intelligent Interaction Between Surgeon and Laparoscopic Assistant Robot System,” In: ROMAN 2005, IEEE International Workshop on Robot and Human Interactive Communication ((IEEE, Nashville, USA, 2005) pp. 6065.Google Scholar
Kwon, D.-S., Ko, S.-Y. and Kim, J., “Intelligent Laparoscopic Assistant Robot Through Surgery Task Model: How to Give Intelligence to Medical Robots,” In: Medical Robotics , (V. Bozovic) (Intechopen, London, 2008) pp. 197.Google Scholar
Sarmah, A. and Gulhane, U., “Surgical robot teleoperated laparoscopic grasper with haptics feedback system,” In: INTERACT-2010 (2010) pp. 288–291.CrossRefGoogle Scholar
van den Bedem, L., Hendrix, R., Rosielle, N., Steinbuch, M. and Nijmeijer, H., “Design of A Minimally Invasive Surgical Teleoperated Master-Slave System with Haptic Feedback,” In: 2009 International Conference on Mechatronics and Automation (2009) pp. 6065.Google Scholar
Su, H., Zhang, J., She, Z., Zhang, X., Fan, K., Zhang, X., Liu, Q., Ferrigno, G. and De Momi, E., “Incorporating model predictive control with fuzzy approximation for robot manipulation under remote center of motion constraint,” Compl. Intell. Syst 2020, 5 (2021).Google Scholar
Hassan, A. A., El-Habrouk, M. and Deghedie, S., “Inverse kinematics of redundant manipulators formulated as quadratic programming optimization problem solved using recurrent neural networks: A review,” Robotica 38(8), 14951512 (2020).CrossRefGoogle Scholar
De Rossi, G., Minelli, M., Roin, S., Falezza, F., Sozzi, A., Ferraguti, F., Setti, F., Bonfè, M., Secchi, C., Muradore, R., “A first evaluation of a multi-modal learning system to control surgical assistant robots via action segmentation,” IEEE Trans. Med. Robot. Bion. 3(3), 714724 (2021).CrossRefGoogle Scholar
Du, Z., Liang, Y., Yan, Z., Sun, L. and Chen, W., “Human-robot interaction control of a haptic master manipulator used in laparoscopic minimally invasive surgical robot system,” Mech. Mach. Theory 156, 104132 (2021).Google Scholar
K, A., Perception, control and path planning of robotic laparoscopic surgical system (2022).Google Scholar
Kim, M., Zhang, Y. and Jin, S., “Control strategy for direct teaching of Non-Mechanical remote center motion of surgical assistant robot with Force/Torque sensor,” Appl. Sci. 11(9), 4279 (2021).Google Scholar
Khattab, Y., “Trajectory Control of A Laparoscopic 3-PUU Parallel Manipulator Based on Neural Network in SIMSCAPE SIMULINK Environment,” In: Mechanical Engineering (Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt, 2022) pp. 131.Google Scholar
Zidane, I. F., Khattab, Y., El-Habrouk, M. and Rezeka, S., “Trajectory control of a laparoscopic 3-PUU parallel manipulator based on neural network in SIMSCAPE SIMULINK environment,” Alexandria Eng. J. 61(12), 93359363 (2022).CrossRefGoogle Scholar
Khattab, Y., Zidane, I. F., El-Habrouk, M. and Rezeka, S., “Solving Kinematics of A Parallel Manipulator Using Artificial Neural Networks,” In: 31st International Conference on Computer Theory and Applications (ICCTA 2021) (2021).CrossRefGoogle Scholar
Ali, J. M., Lam, K. and Coonar, A. S., “Robotic camera assistance: The future of laparoscopic and thoracoscopic surgery?,” Surg. Innov. 25(5), 485491 (2018).CrossRefGoogle ScholarPubMed
Gumbs, A. A., Crovari, F., Vidal, C., Henri, P. and Gayet, B., “Modified robotic lightweight endoscope (ViKY) validation in vivo in a porcine model,” Surg. Innov. 14(4), 261264 (2007).CrossRefGoogle ScholarPubMed
Nebot, P. B., Jain, Y., Haylett, K., Stone, R. and McCloy, R., “Comparison of task performance of the camera-holder robots EndoAssist and Aesop,” Surg. Laparo. Endo. Per. 13(5), 334338 (2003).CrossRefGoogle ScholarPubMed
Wagner, A. A., Varkarakis, I. M., Link, R. E., Sullivan, W. and Su, L.-M., “Comparison of surgical performance during laparoscopic radical prostatectomy of two robotic camera holders, EndoAssist and AESOP: A pilot study,” Urology 68(1), 7074 (2006).CrossRefGoogle ScholarPubMed
Yavuz, Y., Ystgaard, B., Skogvoll, E. and Mårvik, R., “A comparative experimental study evaluating the performance of surgical robots aesop and endosista,” Surg. Laparo. Endo. Per. 10(3), 163167 (2000).CrossRefGoogle ScholarPubMed
Samalavicius, N. E., Janusonis, V., Siaulys, R., Jasėnas, M., Deduchovas, O., Venckus, R., Ezerskiene, V., Paskeviciute, R. and Klimaviciute, G., “Robotic surgery using senhance® robotic platform: Single center experience with first 100 cases,” J. Robot. Surg, 1-6 (2019).Google ScholarPubMed
Kastelan, Z., Hudolin, T., Kulis, T., Penezic, L., Gidaro, S., Bakula, M., Zekulic, T. and Knezevic, N.. Extraperitoneal Radical Prostatectomy with the Senhance Robotic Platform:First 40 Cases (European Urology, 2020).Google ScholarPubMed
Dhanani, N. H., Olavarria, O. A., Bernardi, K., Lyons, N. B., Holihan, J. L., Loor, M., Haynes, A. B. and Liang, M. K., “The evidence behind robot-assisted abdominopelvic surgery: A systematic review,” Ann. Intern. Med. 174(8), 11101117 (2021).CrossRefGoogle ScholarPubMed
Bakalar, N., “Are robotic surgeries really better?,” The NewYork Times (2021).Google Scholar
Kitaguchi, D., Takeshita, N., Hasegawa, H. and Ito, M., “Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives,” Ann. Gastroenterol. Surg. 6(1), 2936 (2021).Google Scholar
Littlejohns, P., Robotic laparoscopy: Is it the future of minimally-invasive surgical procedures? (NS Medical Devices, 2021).Google Scholar
Sánchez-Margallo, F. M. and Sánchez-Margallo, J. A.. "Ergonomics in Laparoscopic Surgery" Laparoscopic Surgery (InTech, Rijeka,2017) pp. 105123.Google Scholar
Endocontrol Medical,” In: Viky EP Laparoscopy Under Control (2017).Google Scholar
Intuitive Surgical, Da Vinci by Intuitive. Enabling Surgical Care to Get Patients Back to What Matters (2020).Google Scholar
Rossitto, C., Alletti, S. G., Romano, F., Fiore, A., Coretti, S., Oradei, M., Ruggeri, M., Cicchetti, A., Marchetti, M., Fanfani, F., “Use of robot-specific resources and operating room times: The case of telelap Alf-X robotic hysterectomy,” Int. J. Med. Robot. Comput. Assist. Surg. 12(4), 613619 (2016).CrossRefGoogle ScholarPubMed
Senhance, The Senhance Surgical System with Digital Laparoscopy, A New Era in Minimally Invasive Surgery (2020).Google Scholar
CMR Surgical Ltd., Versius® Robotics that Works Around What Matters Most, 2020).Google Scholar
Raheem, A. A., Troya, I. S., Kim, D. K., Kim, S. H., Won, P. D., Joon, P. S., Hyun, G. S. and Rha, K. H., “Robot-assisted fallopian tube transection and anastomosis using the new REVO-I robotic surgical system: Feasibility in a chronic porcine model,” BJU Int. 118(4), 604609 (2016).CrossRefGoogle Scholar
Kang, C. M., Chong, J. U., Lim, J. H., Park, D. W., Park, S. J., Gim, S., Ye, H. J., Kim, S. H. and Lee, W. J., “Robotic cholecystectomy using the newly developed korean robotic surgical system, Revo-i: A preclinical experiment in a porcine model,” Yonsei Med. J. 58(5), 10751077 (2017).CrossRefGoogle ScholarPubMed
Kim, D. K., Park, D. W. and Rha, K. H., “Robot-assisted partial nephrectomy with the REVO-I robot platform in porcine models,” Eur. Urol. 69(3), 541542 (2016).CrossRefGoogle ScholarPubMed
Surgical Solution, Revo. Google Scholar
Avatera System. Google Scholar
Medicaroid. Google Scholar
Hubens, G., Ysebaert, D., Vaneerdeweg, W., Chapelle, T., Eyskens, E., Houben, J. J., Lipkind, R. and Meurisse, M., “Laparoscopic adrenalectomy with the aid of the AESOP, 2000 robot,” Acta. Chir. Belg. 99(3), 125127 (1999).Google ScholarPubMed
Kavoussi, L. R., Moore, R. G., Adams, J. B. and Partin, A. W., “Comparison of robotic versus human laparoscopic camera control,” J. Urol. 154(6), 21342136 (1995).CrossRefGoogle ScholarPubMed
Merola, S., Weber, P., Wasielewski, A. and Ballantyne, G. H., “Comparison of laparoscopic colectomy with and without the aid of a robotic camera holder,” Surg. Laparo. Endo. Per. 12(1), 4651 (2002).CrossRefGoogle ScholarPubMed
Okada, S., Tanaba, Y., Yamauchi, H. and Sato, S., “Single-surgeon thoracoscopic surgery with a voice-controlled robot,” Lancet 351(9111), 1249 (1998).CrossRefGoogle ScholarPubMed
Partin, A. W., Adams, J. B., Moore, R. G. and Kavoussi, L. R., “Complete robot-assisted laparoscopic urologic surgery: A preliminary report,” J. Am. Coll. Surg. 181(6), 552557 (1995).Google ScholarPubMed
Hung, A. J., Abreu, A. L. D. C., Shoji, S., Goh, A. C., Berger, A. K., Desai, M. M., Aron, M., Gill, I. S. and Ukimura, O., “Robotic transrectal ultrasonography during robot-Assisted radical prostatectomy,” Eur. Urol. 62(2), 341348 (2012).CrossRefGoogle ScholarPubMed
Maheshwari, M. and Thomas, I., “Concurrent use of a robotic uterine manipulator and a robotic laparoscope holder to achieve assistant-less solo laparoscopy: the double ViKY,” J. Robot. Surg. 9(3), 211213 (2015).CrossRefGoogle Scholar
Okamoto, H., Maruyama, S. and Fujii, H., “Initial japanese experience of laparoscopic cholecystectomy using a new robot-Assisted system,” Int. Surg. 103(3-4), 171176 (2018).CrossRefGoogle Scholar
Pandalai, S., Kavanagh, D. and Neary, P., “Robotic assisted laparoscopic colectomy,” Irish Med. J. 103(6), 181182 (2010).Google ScholarPubMed
Swan, K., Kim, J. and Advincula, A., “Advanced uterine manipulation technologies,” Surg. Technol. Int. 20, 215220 (2010).Google ScholarPubMed
Takahashi, M., Takahashi, M., Nishinari, N., Matsuya, H., Tosha, T., Minagawa, Y., Shimooki, O. and Abe, T., “Clinical evaluation of complete solo surgery with the, ViKY®, robotic laparoscope manipulator,” Surg. Endosc. 31(2), 981986 (2017).CrossRefGoogle ScholarPubMed
Vaida, C., Pisla, D., Plitea, N., Gherman, B., Gyurka, B., Graur, F. and Vlad, L., “Development of A Voice Controlled Surgical Robot,” In: New Trends in Mechanism Science (Springer, 2010) pp. 567–574.Google Scholar
Aiono, S., Gilbert, J. M., Soin, B., Finlay, P. A. and Gordan, A., “Controlled trial of the introduction of a robotic camera assistant (EndoAssist) for laparoscopic cholecystectomy,” Surg. Endosc. 16(9), 12671270 (2002).CrossRefGoogle ScholarPubMed
Finlay, P. A., “Clinical Experience with A Goniometric Head-Controlled Laparoscope Manipulator,” In: IARP Symposium on Medical Robotics (1996).Google Scholar
Kommu, S. S., Rimington, P., Anderson, C. and Rané, A., “Initial experience with the EndoAssist camera-holding robot in laparoscopic urological surgery,” J. Robot. Surg. 1(2), 133137 (2007).CrossRefGoogle ScholarPubMed
Mittal, R., Sbaih, M., Motson, R. W. and Arulampalam, T., “Use of a robotic camera holder (FreeHand®) for laparoscopic appendicectomy,” Minim. Invasiv. Ther. 29(1), 5660 (2020).CrossRefGoogle ScholarPubMed
Penev, B., Ahmed, S. and Donohue, J., “The experience of robotic camera holder during laparoscopic radical retropubic prostatectomy,” Age 61(1), 087 (2019).Google Scholar
Kobayashi, T., Sugino, K., Hashimoto, H. and Inoue, M., “Utility of endoscope holder robot EMARO in laparoscopic sacral colpopexy,” Int. Urogynecol. J. 29, S190S190 (2018).Google Scholar
Bozzini, G., Gidaro, S. and Taverna, G., “Robot-Assisted laparoscopic partial nephrectomy with the ALF-X robot on pig models,” Eur. Urol. 69(2), 376377 (2016).CrossRefGoogle ScholarPubMed
Fanfani, F., Restaino, S., Alletti, S. G., Fagotti, A., Monterossi, G., Rossitto, C., Costantini, B. and Scambia, G., “TELELAP ALF-X robotic-assisted laparoscopic hysterectomy: Feasibility and perioperative outcomes,” J. Minim. Invas. Gyn. 22(6), 10111017 (2015).CrossRefGoogle ScholarPubMed
Stark, M., Pomati, S., D’Ambrosio, A., Giraudi, F. and Gidaro, S., “A new telesurgical platform-preliminary clinical results,” Minim. Invasiv. Ther. 24(1), 3136 (2015).CrossRefGoogle ScholarPubMed
Alletti, S. G., Rossitto, C., Fanfani, F., Fagotti, A., Costantini, B., Gidaro, S., Monterossi, G., Selvaggi, L. and Scambia, G., “Telelap ALF-X-assisted laparoscopy for ovarian cyst enucleation: report of the first 10 cases,” J. Minim. Invas. Gyn. 22(6), 10791083 (2015).CrossRefGoogle Scholar
Fanfani, F., Monterossi, G., Fagotti, A., Rossitto, C., Alletti, S. G., Costantini, B., Gallotta, V., Selvaggi, L., Restaino, S., Scambia, G., “The new robotic TELELAP ALF-X in gynecological surgery: Single-center experience,” Surg. Endosc. 30(1), 215221 (2016).CrossRefGoogle ScholarPubMed
Stephan, D., Sälzer, H. and Willeke, F., “First experiences with the new Senhance® telerobotic system in visceral surgery,” Visc. Med. 34(1), 3136 (2018).CrossRefGoogle ScholarPubMed
deBeche-Adams, T., Eubanks, W. S. and Sebastian, G., “Early experience with the senhance®-laparoscopic/robotic platform in the US,” J. Robot. Surg. 13(2), 357359 (2019).CrossRefGoogle ScholarPubMed
Spinelli, A., David, G., Gidaro, S., Carvello, M., Sacchi, M., Montorsi, M. and Montroni, I., “First experience in colorectal surgery with a new robotic platform with haptic feedback,” Colorectal Dis. 20(3), 228235 (2018).CrossRefGoogle Scholar
Melling, N., Barr, J., Schmitz, R., Polonski, A., Miro, J., Ghadban, T., Wodack, K., Izbicki, J., Zani, S., Perez, D., “Robotic cholecystectomy: first experience with the new senhance robotic system,” J. Robot. Surg. 13(3), 495500 (2019).Google ScholarPubMed
Lin, C. C., Huang, S. C., Lin, H. H., Chang, S. C., Chen, W. S. and Jiang, J. K., “An early experience with the senhance surgical robotic system in colorectal surgery: A single-Institute study,” Int. J. Med. Robot. Comput. Assist. Surg., (2020).Google ScholarPubMed
Samalavičius, N. E., Klimašauskienė, V., Janušonis, V., Samalavičius, A. L. and Dulskas, A., “Robotic total mesorectal excision for mid-rectal cancer using the senhance® robotic platform-a video vignette,” Colorectal Dis. 22(5), 592593 (2020).CrossRefGoogle ScholarPubMed
Samalavicius, N., Smolskas, E., Deduchovas, O., Janusonis, V. and Dulskas, A., “Robotic abdominoperineal resection for pT 2N0M0 low rectal cancer using the senhance TransEnterix robotic platform-a video vignette,” Colorectal Dis. 21(7), 847848 (2019).CrossRefGoogle Scholar
Samalavicius, N. E., Smolskas, E., Deduchovas, O., Janusonis, V. and Dulskas, A., “Robotic right colectomy using the new Senhance® robotic platform: a three-trocar technique-a video vignette,” Colorectal Dis. 21(9), 10921093 (2019).CrossRefGoogle ScholarPubMed
Lim, J. H., Lee, W. J., Park, D. W., Yea, H. J., Kim, S. H. and Kang, C. M., “Robotic cholecystectomy using Revo-i model MSR-5000, the newly developed Korean robotic surgical system: A preclinical study,” Surg. Endosc. 31(8), 33913397 (2017).CrossRefGoogle ScholarPubMed
Chang, K. D., Raheem, A. A., Choi, Y. D., Chung, B. H. and Rha, K. H., “Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: surgical technique and results of the first human trial,” BJU Int. 122(3), 441448 (2018).CrossRefGoogle ScholarPubMed
Lim, J. H., Lee, W. J., Choi, S. H. and Kang, C. M., “Cholecystectomy Using the Revo-i Robotic Surgical System From Korea: The First Clinical Study,” In: Updates in Surgery (2020) pp. 17.Google Scholar
Ku, G., Kang, I., Lee, W. J. and Kang, C. M., “Revo-i assisted robotic central pancreatectomy,” Ann. Hepato-biliary-pancreatic Surg. 24(4), 547550 (2020).CrossRefGoogle ScholarPubMed
Morton, J., Hardwick, R. H., Tilney, H. S., Gudgeon, A. M., Jah, A., Stevens, L., Marecik, S. and Slack, M., “Preclinical Evaluation of the Versius Surgical System, A New Robot-Assisted Surgical Device for use in Minimal Access General and Colorectal Procedures,” In: Surgical Endoscopy (2020) pp. 19.Google Scholar
Thomas, B. C., Slack, M., Hussain, M., Barber, N., Pradhan, A., Dinneen, E. and Stewart, G. D., “Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access renal and prostate surgery,” Eur. Urol. Focus 7(2), 444452 (2020).CrossRefGoogle ScholarPubMed
Kelkar, D., Borse, M. A., Godbole, G. P., Kurlekar, U. and Slack, M., “Interim Safety Analysis of the First-in-human Clinical Trial of the Versius Surgical System, A New Robot-Assisted Device for use in Minimal Access Surgery,” In: Surgical Endoscopy (2020) pp. 110.Google Scholar
Puntambekar, S. P., Goel, A., Chandak, S., Chitale, M., Hivre, M., Chahal, H., Rajesh, K. and Manerikar, K., “Feasibility of robotic radical hysterectomy (RRH) with a new robotic system. Experience at Galaxy Care Laparoscopy Institute,” J. Robot. Surg. 1-6 (2020).Google ScholarPubMed
Li, R., Zhu, S. and Zhu, L., “First experience with the use of, micro hand S, surgical robot in sleeve gastrectomy,” J. Laparoendosc. Adv. Surg. Tech. 30(7), 810814 (2020).CrossRefGoogle Scholar
Zeng, Y., Wang, G., Liu, Y., Li, Z., Yi, B. and Zhu, S., “The “Micro Hand S” Robot-Assisted Versus Conventional Laparoscopic Right Colectomy: Short-Term Outcomes at a Single Center,” J. Laparoendosc. Adv. Surg. Tech. 30(4), 363368 (2020).CrossRefGoogle Scholar
Ng, C.-F., Chan, E. S. and Teoh, J. Y., “The use of the da Vinci SP system for retzius-sparing radical prostatectomy in cadaveric model,” Urol. 125, 260 (2019).CrossRefGoogle Scholar
Kneist, W., Stein, H. and Rheinwald, M., “Da vinci single-Port robot-assisted transanal mesorectal excision: a promising preclinical experience,” Surg. Endosc. 34(7), 32323235 (2020).CrossRefGoogle Scholar
Park, D., Shaear, M., Chen, Y. H., Russell, J. O., Kim, H. Y. and Tufano, R. P., “Transoral robotic thyroidectomy on two human cadavers using the intuitive da vinci single port robotic surgical system and CO2 insufflation: preclinical feasibility study,” Head & Neck 41(12), 42294233 (2019).CrossRefGoogle Scholar
Agarwal, D. K., Sharma, V., Toussi, A., Viers, B. R., Tollefson, M. K., Gettman, M. T. and Frank, I., “Initial experience with da vinci single-port robot-assisted radical prostatectomies,” Eur. Urol. 77(3), 373379 (2020).CrossRefGoogle Scholar
Steinberg, R. L., Passoni, N., Garbens, A., Johnson, B. A. and Gahan, J. C., “Initial experience with extraperitoneal robotic-assisted simple prostatectomy using the da Vinci SP surgical system,” J. Robot. Surg. 14(4), 601607 (2020).CrossRefGoogle ScholarPubMed
Park, Y. M., Moon, Y. M., Lim, J. Y., Choi, E. C., Kim, S.-H., Holsinger, F. C. and Koh, Y. W., “Gasless transoral robotic thyroidectomy using the DaVinci SP system: Feasibility, safety, and operative technique,” Oral Oncol 95, 136142 (2019).CrossRefGoogle ScholarPubMed