Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T08:01:39.632Z Has data issue: false hasContentIssue false

Phase oscillator optimization eliminates jittering during transition gaits in multimodal locomotion assisted by a portable hip exoskeleton

Published online by Cambridge University Press:  24 August 2023

Wei Yang
Affiliation:
Ningbo Innovation Center, Zhejiang University, Ningbo, China College of Mechanical Engineering, Zhejiang University, Hangzhou, China
Zehao Yan
Affiliation:
Ningbo Innovation Center, Zhejiang University, Ningbo, China College of Mechanical Engineering, Zhejiang University, Hangzhou, China
Linfan Yu
Affiliation:
Ningbo Innovation Center, Zhejiang University, Ningbo, China College of Mechanical Engineering, Zhejiang University, Hangzhou, China
Linghui Xu
Affiliation:
Ningbo Innovation Center, Zhejiang University, Ningbo, China College of Mechanical Engineering, Zhejiang University, Hangzhou, China
Xiaoguang Liu*
Affiliation:
Spinal Cord Injury Rehabilitation Department, Ningbo Rehabilitation Hospital, Ningbo, China
Canjun Yang
Affiliation:
College of Mechanical Engineering, Zhejiang University, Hangzhou, China
*
Corresponding author: Xiaoguang Liu; Email: melecture@126.com

Abstract

To be successfully used in daily life situations, exoskeletons should be effective across multimodal scenarios, including walking on various terrains, and transitions between locomotion modes such as walking-to-stop. Correct continuous gait phase estimation is essential for high-level walking assistance control. Despite the impressive advances in gait phase estimation for a variety of locomotion modes, transition gait phase estimation is rarely researched, leading to the jittering of exoskeletons during walking-to-stop transitions. We propose an optimized phase oscillator (PO-opt) that estimates the gait phase correctly during transition gaits in multimodal locomotion, which is beneficial to eliminating the jittering. In the phase plane, a lateral axis extreme difference (LAED) is adopted to classify transition gaits. The threshold of LAED for transition gaits in multimodal locomotion was preliminarily determined by simulation, which was then applied and validated in experiments. Simulation results indicated that a threshold of 15.0 was suitable for transition gaits classification during treadmill walking, free walking, and ramp ascent/descent, while results of the experiment showed that a threshold between 6.5 and 10.5 was applicable for treadmill walking, free walking, and stair ascent/descent. In particular, the jittering elimination rates for 3, 4, and 5 km/h treadmill walking were improved from 29%, 21%, and 4% (PO model) to 100%, respectively, when the threshold of LAED was set at 15.0 in PO-opt model. The results indicated a significant increase in the rate of jittering elimination when the PO-opt model was applied. The model holds great promise in real-world applications for prostheses and other types of exoskeletons.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, C., Yu, L., Xu, L., Yan, Z., Hu, D., Zhang, S. and Yang, W., “Current developments of robotic hip exoskeleton toward sensing, decision, and actuation: A review,” Wearable Technol. 3, E15 (2022). doi: 10.1017/wtc.2022.11.CrossRefGoogle Scholar
Li, Z., Yuan, Y., Luo, L., Su, W., Zhao, K., Xu, C., Huang, J. and Pi, M., “Hybrid brain/muscle signals powered wearable walking exoskeleton enhancing motor ability in climbing stairs activity,” IEEE Trans. Med. Robot. Bionics 1(4), 218227 (2019). doi: 10.1109/tmrb.2019.2949865.CrossRefGoogle Scholar
Wei, Q., Li, Z., Zhao, K., Kang, Y. and Su, C.-Y., “Synergy-based control of assistive lower-limb exoskeletons by skill transfer,” IEEE/ASME Trans. Mechatron. 25(2), 705715 (2020). doi: 10.1109/tmech.2019.2961567.CrossRefGoogle Scholar
Kim, J., Lee, G., Heimgartner, R., Arumukhom Revi, D., Karavas, N., Nathanson, D., Galiana, I., Eckert-Erdheim, A., Murphy, P., Perry, D., Menard, N., Choe, D. K., Malcolm, P. and Walsh, C. J., “Reducing the metabolic rate of walking and running with a versatile, portable exosuit,” Science 365(6454), 668672 (2019). doi: 10.1126/science.aav7536.CrossRefGoogle ScholarPubMed
Lv, G., Zhu, H. and Gregg, R. D., “On the design and control of highly backdrivable lower-limb exoskeletons: A discussion of past and ongoing work,” IEEE Control Syst. 38(6), 88113 (2018). doi: 10.1109/MCS.2018.2866605.CrossRefGoogle ScholarPubMed
Sawicki, G. S., Beck, O. N., Kang, I. and Young, A. J., “The exoskeleton expansion: Improving walking and running economy,” J. Neuroeng. Rehabil. 17(1), 25 (2020). doi: 10.1186/s12984-020-00663-9.CrossRefGoogle ScholarPubMed
Chiu, V. L., Raitor, M. and Collins, S. H., “Design of a hip exoskeleton with actuation in frontal and sagittal planes,” IEEE Trans. Med. Robot. Bionics 3(3), 773782 (2021). doi: 10.1109/tmrb.2021.3088521.CrossRefGoogle Scholar
Bryan, G. M., Franks, P. W., Klein, S. C., Peuchen, R. J. and Collins, S. H., “A hip-knee-ankle exoskeleton emulator for studying gait assistance,” Int. J. Robot. Res. 40(4-5), 722746 (2020). doi: 10.1177/0278364920961452.CrossRefGoogle Scholar
Gordon, D. F. N., McGreavy, C., Christou, A. and Vijayakumar, S., “Human-in-the-loop optimization of exoskeleton assistance via online simulation of metabolic cost,” IEEE Trans. Robot. 38(3), 120 (2022). doi: 10.1109/tro.2021.3133137.CrossRefGoogle Scholar
Ishmael, M. K., Archangeli, D. and Lenzi, T., “Powered hip exoskeleton improves walking economy in individuals with above-knee amputation,” Nat. Med. 27(10), 17831788 (2021). doi: 10.1038/s41591-021-01515-2.CrossRefGoogle ScholarPubMed
Han, H., Wang, W., Zhang, F., Li, X., Chen, J., Han, J. and Zhang, J., “Selection of Muscle-Activity-Based Cost Function in Human-in-the-Loop Optimization of Multi-Gait Ankle Exoskeleton Assistance,” IEEE Trans. Neural Syst. Rehabil. Eng. 29, 944952 (2021). doi: 10.1109/TNSRE.2021.3082198.CrossRefGoogle ScholarPubMed
Wang, W., Chen, J., Ji, Y., Jin, W., Liu, J. and Zhang, J., “Evaluation of lower leg muscle activities during human walking assisted by an ankle exoskeleton,” IEEE Trans. Ind. Inform. 16(11), 71687176 (2020). doi: 10.1109/tii.2020.2974232.CrossRefGoogle Scholar
Ingraham, K. A., Remy, C. D. and Rouse, E. J., “The role of user preference in the customized control of robotic exoskeletons,” Sci. Robot. 7(64), eabj3487 (2022). doi: 10.1126/scirobotics.abj3487.CrossRefGoogle ScholarPubMed
Medrano, R. L., Thomas, G. C. and Rouse, E. J., “Can humans perceive the metabolic benefit provided by augmentative exoskeletons?J. Neuroeng. Rehabil. 19(1), 26 (2022). doi: 10.1186/s12984-022-01002-w.CrossRefGoogle ScholarPubMed
Li, G., Li, Z., Su, C.-Y. and Xu, T., “Active human-following control of an exoskeleton robot With body weight support,” IEEE Trans. Cybern. 1–13 (2023).   doi: 10.1109/TCYB.2023.3253181.Google ScholarPubMed
Kang, I., Kunapuli, P. and Young, A. J., “Real-time neural network-based gait phase estimation using a robotic hip exoskeleton,” IEEE Trans. Med. Robot. Bionics 2(1), 2837 (2020). doi: 10.1109/tmrb.2019.2961749.CrossRefGoogle Scholar
Yan, T., Parri, A., Garate, V. R., Cempini, M., Ronsse, R. and Vitiello, N., “An oscillator-based smooth real-time estimate of gait phase for wearable robotics,” Auton. Robot. 41(3), 759774 (2016). doi: 10.1007/s10514-016-9566-0.CrossRefGoogle Scholar
Zheng, E., Manca, S., Yan, T., Parri, A., Vitiello, N. and Wang, Q., “Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators,” IEEE Trans. Biomed. Eng. 64(10), 24192430 (2017). doi: 10.1109/TBME.2017.2672720.CrossRefGoogle ScholarPubMed
Seo, K., Kim, K., Park, Y. J., Cho, J-K., Lee, J., Choi, B., Lim, B., Lee, Y. and Shim, Y., “Adaptive Oscillator-Based Control for Active Lower-Limb Exoskeleton and its Metabolic Impact,” In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018) pp. 6752–678. doi: 10.1109/ICRA.2018.8460841.CrossRefGoogle Scholar
Buchli, J., Righetti, L. and Ijspeert, A. J., “Frequency analysis with coupled nonlinear oscillators,” Physica D 237(13), 17051718 (2008). doi: 10.1016/j.physd.2008.01.014.CrossRefGoogle Scholar
Lenzi, T., Carrozza, M. C. and Agrawal, S. K., “Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking,” IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 938948 (2013). doi: 10.1109/TNSRE.2013.2248749.CrossRefGoogle ScholarPubMed
Zhang, J., Fiers, P., Witte, K. A., Jackson, R. W. and Collins, S. H., “Human-in-the-loop optimization of exoskeleton assistance during walking,” Science 356(6344), 12801283 (2017).CrossRefGoogle ScholarPubMed
Kang, I., Molinaro, D. D., Duggal, S., Chen, Y., Kunapuli, P. and Young, A. J., “Real-time gait phase estimation for robotic hip exoskeleton control during multimodal locomotion,” IEEE Robot. Autom. Lett. 6(2), 34913497 (2021). doi: 10.1109/lra.2021.3062562.CrossRefGoogle ScholarPubMed
Sugar, T. G., Bates, A., Holgate, M., Kerestes, J., Mignolet, M., New, P., Ramachandran, R. K., Redkar, S. and Wheeler, C., “Limit cycles to enhance human performance based on phase oscillators,” J. Mech. Robot. 7(1), (2015). doi: 10.1115/1.4029336.CrossRefGoogle Scholar
De la Fuente, J., Subramanian, S. C., Sugar, T. G. and Redkar, S., “A robust phase oscillator design for wearable robotic systems,” Robot. Auton. Syst. 128, 103514 (2020). doi: 10.1016/j.robot.2020.103514.CrossRefGoogle Scholar
De la Fuente, J., Sugar, T. G. and Redkar, S., “Nonlinear, phase-based oscillator to generate and assist periodic motions,” J. Mech. Robot. 9(2), (2017). doi: 10.1115/1.4036023.CrossRefGoogle Scholar
Yang, W., Xu, L., Yu, L., Chen, Y. and Yang, C., “Hybrid oscillator-based no-delay hip exoskeleton control for free walking assistance,” Ind. Robot 48(6), 906914 (2021).CrossRefGoogle Scholar
Hong, W., Kumar, N. A. and Hur, P., “A phase-shifting based human gait phase estimation for powered transfemoral prostheses,” IEEE Robot. Autom. Lett. 6(3), 51135120 (2021). doi: 10.1109/lra.2021.3068907.CrossRefGoogle Scholar
Quintero, D., Lambert, D. J., Villarreal, D. J. and Gregg, R. D., “Real-time continuous gait phase and speed estimation from a single sensor,” Control Technol. Appl. 2017, 847852 (2017). doi: 10.1109/CCTA.2017.8062565.Google ScholarPubMed
Camargo, J., Ramanathan, A., Flanagan, W. and Young, A., “A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions,” J. Biomech. 119(108), 110320 (2021). doi: 10.1016/j.jbiomech.2021.110320.CrossRefGoogle ScholarPubMed
Ding, Y., Panizzolo, F. A., Siviy, C., Malcolm, P., Galiana, I., Holt, K. G. and Walsh, C. J., “Effect of timing of hip extension assistance during loaded walking with a soft exosuit,” J. Neuroeng. Rehabil. 13(1), 87 (2016). doi: 10.1186/s12984-016-0196-8.CrossRefGoogle ScholarPubMed
Galle, S., Malcolm, P., Collins, S. H. and De Clercq, D., “Reducing the metabolic cost of walking with an ankle exoskeleton: Interaction between actuation timing and power,” J. Neuroeng. Rehabil. 14(1), 35 (2017). doi: 10.1186/s12984-017-0235-0.CrossRefGoogle ScholarPubMed
Malcolm, P., Derave, W., Galle, S. and De Clercq, D., “A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking,” PLoS One 8(2), e56137 (2013). doi: 10.1371/journal.pone.0056137.CrossRefGoogle ScholarPubMed
Young, A. J., Foss, J., Gannon, H. and Ferris, D. P., “Influence of power delivery timing on the energetics and biomechanics of humans wearing a hip exoskeleton,” Front. Bioeng. Biotechnol. 5, 4 (2017). doi: 10.3389/fbioe.2017.00004.CrossRefGoogle Scholar