Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T23:19:19.091Z Has data issue: false hasContentIssue false

Nonlinear optimal control for a 4-DOF SCARA robotic manipulator

Published online by Cambridge University Press:  25 April 2023

G. Rigatos*
Affiliation:
Unit of Industrial Automation, Industrial Systems Institute, Rion Patras, Greece
M. Abbaszadeh
Affiliation:
Department of ECS Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
K. Busawon
Affiliation:
Department of Mechanical Engineering, University of Northumbria, Newcastle, UK
J. Pomares
Affiliation:
Department of Systems Engineering, University of Alicante, Alicante, Spain
*
*Corresponding author. E-mail: grigat@ieee.org

Abstract

Selective compliance articulated robot arms (SCARA) robotic manipulators find wide use in industry. A nonlinear optimal control approach is proposed for the dynamic model of the 4-degrees of freedom (DOF) SCARA robotic manipulator. The dynamic model of the SCARA robot undergoes approximate linearization around a temporary operating point that is recomputed at each time-step of the control method. The linearization relies on Taylor series expansion and on the associated Jacobian matrices. For the linearized state-space model of the system, a stabilizing optimal (H-infinity) feedback controller is designed. To compute the controller’s feedback gains, an algebraic Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control method are proven through Lyapunov analysis. The proposed control method is advantageous because: (i) unlike the popular computed torque method for robotic manipulators, it is characterized by optimality and is also applicable when the number of control inputs is not equal to the robot’s number of DOFs and (ii) it achieves fast and accurate tracking of reference setpoints under minimal energy consumption by the robot’s actuators. The nonlinear optimal controller for the 4-DOF SCARA robot is finally compared against a flatness-based controller implemented in successive loops.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rigatos, G. and Busawon, K.. Robotic Manipulators and Vehicles: Control, Estimation and Filtering (Springer, Cham, 2018).CrossRefGoogle Scholar
Voglewede, P., Smith, A. P. C. and Monti, A., “Dynamic performance of a SCARA robot manipulator with uncertainty using polynomial chaos theory,” IEEE Trans. Robot. 25(1), 206219 (2009).CrossRefGoogle Scholar
Dessaint, L. A., Saad, M. and Al-Haddad, K., “An adaptive controller of a direct drive robot,” IEEE Trans. Ind. Electron. 39(2), 105111 (1992).CrossRefGoogle Scholar
Zhen, S., Zhou, Z., Liu, X., Chen, F., Zhao, H. and Chen, Y. H., “A novel practical robust control inheriting PID for SCARA robot,” IEEE Access 8, 227407227419 (2020).10.1109/ACCESS.2020.3045789CrossRefGoogle Scholar
He, Y., Mai, X., Cui, C., Gao, J., Yang, Z., Zhang, K., Chen, X., Chen, Y. and Tang, H., “Dynamic modeling simulation and experimental verification of a wafer handling SCARA robot with decoupling servo control,” IEEE Access 7, 4714347153 (2019).CrossRefGoogle Scholar
Makino, H., “Development of the SCARA,” J. Robot. Mechatron. 26(1), 114 (2014).CrossRefGoogle Scholar
Das, M. T. and Dulger, L. C., “Mathematical modelling simulation and expertimenal verification of a SCARA robot,” Simul. Model. Pract. Theory 13(3), 257271 (2005).CrossRefGoogle Scholar
Er, N. M. J., Low, C. B., Nah, K. H., Lim, M. H. and Ng, S. Y., “Real-time implementation of a dynamic Fuzzy neural network for a SCARA,” Microprocess Microsyst. 26(9-10), 449461 (2002).Google Scholar
Oral, A., “Patterning automation of sqaure mosaics using computer assited SCARA robot,” Robotica 27(6), 897903 (2009).CrossRefGoogle Scholar
Krönig, L., Hörler, P., Caseiro, S., Grossen, L., Araujo, R., Kneib, J. P. and Bauri, M., “Precision control of miniature SCARA robots for multi-object spectrographs,” J. Optomechatronics 14(1), 5377 (2020).10.1080/15599612.2020.1829218CrossRefGoogle Scholar
Urea, C. and Kern, J., “Trajectory tracking control of a real redundant manipulator of the SCARA type,” J. Electr. Eng. Technol. 11(1), 215226 (2016).CrossRefGoogle Scholar
Urea, C. and Kern, J., “Modelling and control of a redundant SCARA-type manipulator robot,” Int. J. Adv. Robot. Syst. 9(58), 114 (2012).Google Scholar
Urea, C., Cortes, J. and Pascal, J., “Design, construction and control of a SCARA manipulator with 6 degrees of freedom,” J. Appl. Res. Technol. 14(6), 396404 (2014).CrossRefGoogle Scholar
Chonal, H., Guyon, J. B., Koessler, A., Dechambre, Q., Boudon, B., Blaysat, B. and Bouton, N., “Geometrical defect identification of a SCARA robot from a vector modelling of kinematic joints invariant,” Mech. Mach. Theory 162, 104333104362 (2021).Google Scholar
Bianchi, M., van der Maas, A., Maljaari, E. and Heemels, W. P. M. H.. Offset-Free MPC for Resource Sharing on a Nonlinear SCARA Robot. In: IFAC NMPC 2018, 6th IFAC Conference on Nonlinear Model Predictive Control, Madison, Winsconsin, USA (2018).Google Scholar
Takagi, S. and Uchiyama, N., “Robust control system design for SCARA robots using adaptive pole placement,” IEEE Trans. Ind. Electron. 52(3), 315321 (2005).10.1109/TIE.2005.847578CrossRefGoogle Scholar
Visioli, A. and Legnani, G., “On the trajectory tracking control of industrial SCARA robot manipulators,” IEEE Trans. Ind. Electron. 49(1), 224233 (2002).10.1109/41.982266CrossRefGoogle Scholar
Dehuk, A., Nguyen, A. T., Dequidt, A., Vermeiren, L. and Dambrine, M.. Disturbance Observer-Based Tracking Control for Industrial SCARA Robot Manipulators. In: IEEE IECON 2019, IEEE 45th Annual Conference of the Industrial Electronics Society, Lisbon, Portugal (2019).Google Scholar
Ciliz, M. K. and Tuncay, M. O., “Comparative experiments with a multiple moddel-based adaptive controller for for a SCAARA type direct-drive manipulator,” Robotica 23(6), 721729 (2005).CrossRefGoogle Scholar
Bensafia, Y., Ladaci, S., Khettab, K. and Chemoni, A., “Fractional order model reference adaptive control for SCARA robot trajecotry tracking,” Int. J. Ind. Syst. Eng. 30(2), 138156 (2018).Google Scholar
Chang, T., Jaroonshiriphan, P., Bernhardt, M. and Ludden, P., “Web-based comamnd shaping of Cobra 600 Robot wioth a swinging load,” IEEE Trans. Ind. Inform. 2(1), 5969 (2006).CrossRefGoogle Scholar
Sim, H. S., Kao, Y. M., Jang, S. H., Ahn, D. K., Cho, B. N. and Han, S. H.. A Study on Visual Feedback Control of SCARA Robot Arm. In: IEEE ICCAS 2015, IEEE. 2015 15th Intl. Conference on Control, Automation and Systems, Busan, Korea (2018).Google Scholar
van der Maars, A., Steinbuch, Y. F., Boverhof, A. and Heemel, W. P., “Switched Control of a SCARA Robot with Shared Actuation Resources,” In: IFAC WC 2017, IFAC. 2017 World Congress, (Toulouse, France, 2017).Google Scholar
Arakelian, V. and Briot, S.. Dynamic Balancing of the SCARA Robot, RmanSys 2008. In: 17th CISM-IFToMM Symposium on Robot Design, Tokyo, Japan (2008).Google Scholar
Indri, M., Calafiore, G., Legnani, G., Juttu, F. and Visioli, A., “Optimized Dynamic Calibration of a SCARA Robot, IFAC,” In: 2002 15th Triennial World Congress, (Barcelona, Spain, 2002).Google Scholar
Ali, H. S., Boutat-Baddus, L., Bacis-Aubny, Y. and Darouach, M.. $H_{\infty }$ Control of a SCARA Robot Using Polytopic LPV Approach. In: IEEE MED 2006, IEEE. 2006 Meditternaean Conference on Control and Automation, Ancona, Italy (2006).Google Scholar
Shan, X., Li, Y., Liu, H. and Huang, T., “Residual vibration reduction of high-speed pick-and-place parallel robot using input shaping,” Chin. J. Mech. Eng. 35(16), 18 (2022).CrossRefGoogle Scholar
Yovchev, K. and Miteva, L., “Payload adaptive iterative learning control for robotic manipulators,” Mech. Sci. 13(1), 427326 (2022).CrossRefGoogle Scholar
Ibaraki, S. and Usui, R., “A novel error mapping of bi-directional angular positioning deviation of rotary axes in a SCARA-type robot by ”open-loop” tracking interferometer measurement,” Precis. Eng. 74, 6068 (2022).CrossRefGoogle Scholar
Urrea, C., Kerr, I. and Alvarez, E., “Design and implementation of fault-tolerant control strategies for a real underactuated manipulator robot,” J. Complex Intell. Syst. 8(6), 51015123 (2022).CrossRefGoogle Scholar
He, Y., Li, X., Xu, Z., Zhou, X. and Li, S., “Collaboration of multiple SCARA robots with guaranteed safety using recurrent neural networks,” Neurocomputing 456, 110 (2021).CrossRefGoogle Scholar
Wei, B. and Zhang, D., “A review of dynamic balancing for robotic mechanisms,” Robotica 39(1), 5571 (2021).CrossRefGoogle Scholar
Singh, C. and Liu, G., “Energy-aware redundant actuation for safe spring-assisted modular and reconfigurable robot,” Robotica 40(12), 44984511 (2022).CrossRefGoogle Scholar
Zou, Q., Zhang, D. and Huang, G., “Kinematic joint matrix and block diagram for a group of parallel manipulators,” Robotica 41(3), 939961 (2023).10.1017/S0263574722001187CrossRefGoogle Scholar
Khoshbin, E., Youssef, K., Meziane, R. and Otis, M. J. D., “Reconfigurable fully constrained cable-driven parallel mechanism for avoiding collision between cables with human,” Robotica 40(12), 44054430 (2022).10.1017/S0263574722000996CrossRefGoogle Scholar
Rigatos, G., Siano, P. and Abbaszadeh, M., “No nlinear H-infinity control for 4-DOF underactuated overhead cranes,” Trans. Inst. Meas. Control. 40(7), 23642377 (2017).10.1177/0142331217703702CrossRefGoogle Scholar
Rigatos, G. and Karapanou, E.. Advances in Applied Nonlinear Optimal Control (Cambridge Scholars Publishing, Newcastle, 2020).Google Scholar
Rigatos, G. G. and Tzafestas, S. G., “Extended Kalman filtering for Fuzzy modelling and multi-sensor fusion,” Math. Comput. Model. Dyn. Syst. 13(3), 251266 (2007).CrossRefGoogle Scholar
Basseville, M. and Nikiforov, I.. Detection of Abrupt Changes: Theory and Applications (Prentice-Hall, New Jersey, 1993).Google Scholar
Rigatos, G. and Zhang, Q., “Fuzzy model validation using the local statistical approach,” Fuzzy Sets Syst. 60(7), 882904 (2009).CrossRefGoogle Scholar
Rigatos, G.. Nonlinear Control and Filtering Using Differential Flatness Approaches: Applications to Electromechanical Systems (Springer Cham, 2015).CrossRefGoogle Scholar
Toussaint, G. J., Basar, T. and Bullo, F.. $H_{\infty }$ Optimal Tracking Control Techniques for Nonlinear Underactuated Systems. In: Proceedings of IEEE CDC 2000, 39th IEEE Conference on Decision and Control, Sydney, Australia (2000).Google Scholar