Hostname: page-component-68c7f8b79f-gnk9b Total loading time: 0 Render date: 2025-12-24T00:47:16.724Z Has data issue: false hasContentIssue false

Limit cycles generation for energy-efficient bipedal walking via nonlinear model predictive control

Published online by Cambridge University Press:  23 December 2025

Yuta Hanazawa*
Affiliation:
Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
Yuhi Uchino
Affiliation:
Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
Shinichi Sagara
Affiliation:
Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
*
Corresponding author: Yuta Hanazawa; Email: hanazawa@cntl.kyutech.ac.jp

Abstract

This paper proposes an energy-efficient walking generation method utilizing limit cycles generated by nonlinear model predictive control (NMPC). Conventional limit cycle walking methods rely on strong feedback, such as output zeroing control, to attract the robot’s state toward a predefined periodic trajectory. However, we hypothesize that employing feedback control that better leverages the robot’s dynamics can improve energy efficiency during walking. Our previous work confirmed that using limit cycles generated by NMPC can produce energy-efficient walking patterns. This study builds upon this foundation and proposes a new method for generating walking in a general five-link bipedal robot. Through extensive numerical simulations, we demonstrate that the proposed method achieves highly energy-efficient walking while exhibiting excellent convergence to periodic trajectories.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Krishna, L., Castillo, G. A., Mishra, U. A., Hereid, A. and Kolathaya, S., “Linear policies are sufficient to realize robust bipedal walking on challenging terrains,” IEEE Rob. Autom. Lett. 7(2), 20472054 (2022).10.1109/LRA.2022.3143227CrossRefGoogle Scholar
Selim, E., Alcı, M. and Altıntas, M., “Variable-time-interval trajectory optimization-based dynamic walking control of bipedal robot,” Robotica 40(6), 17991819 (2022).10.1017/S0263574721001363CrossRefGoogle Scholar
Khan, M. S. and Mandava, R. K., “A review on gait generation of the biped robot on various terrains,” Robotica 41(6), 18881930 (2023).10.1017/S0263574723000097CrossRefGoogle Scholar
Han, L., Chen, X., Yu, Z., Gao, Z., Huang, G., Zhang, J., Hashimoto, K. and Huang, Q., “A heuristic gait template planning and dynamic motion control for biped robots,” Robotica 41(2), 789805 (2023).10.1017/S026357472200162XCrossRefGoogle Scholar
Xie, Y., Gao, C., Zhu, S., Yan, X., Kong, L., Xie, A., Gu, J. and Zhang, D., “Gait optimization and energy-based stability for biped locomotion using large-scale programming,” Robotica 41(7), 22072227 (2023).10.1017/S0263574723000413CrossRefGoogle Scholar
Csomay-Shanklin, N., Compton, W. D., Rodriguez, I. D. J., Ambrose, E. R., Yue, Y. and Ames, A. D., “Robust Agility via Learned Zero Dynamics Policies,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2024) pp. 91169123.Google Scholar
Park, H. Y. and Kim, J. H., “Robust Balancing Control of Biped Robots for External Forces,” 2024 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2024) pp. 1325713262.10.1109/ICRA57147.2024.10611281CrossRefGoogle Scholar
Dan, A., Saha, S. K. and Krishna, K. R., “Stable underactuated biped locomotion on various geometrical surfaces,” Multibody Syst. Dyn. 63(1), 183208 (2025).10.1007/s11044-024-09991-3CrossRefGoogle Scholar
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K. and Hirukawa, H., “Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point,” IEEE International Conference on Robotics and Automation (ICRA), vol. 2 (2003) pp. 16201626.Google Scholar
Nishiwaki, K. and Kagami, S., “Strategies for Aadjusting the ZMP Reference Trajectory for Maintaining Balance in Humanoid Walking,” IEEE International Conference on Robotics and Automation (ICRA) (2010) pp. 42304236.Google Scholar
Shigemi, S., Goswami, A. and Vadakkepat, P., “Asimo and Humanoid Robot Research at Honda,” In: Humanoid Robotics: A Reference (2018) pp. 5590.Google Scholar
Rodriguez, D. and Behnke, S., “Deepwalk: Omnidirectional Bipedal Gait by Deep Reinforcement Learning,” 2021 IEEE international conference on robotics and automation (ICRA) (2021) pp. 30333039. IEEE.10.1109/ICRA48506.2021.9561717CrossRefGoogle Scholar
Kasaei, M., Abreu, M., Lau, N., Pereira, A. and Reis, L. P., “Robust biped locomotion using deep reinforcement learning on top of an analytical control approach,” Rob. Auton. Syst. 146, 103900 (2021).10.1016/j.robot.2021.103900CrossRefGoogle Scholar
Ahmad, H., Nakata, Y., Nakamura, Y. and Ishiguro, H., “Adjustable whole-body dynamics for adaptive locomotion: The influence of upper body movements and its interactions with the lower body parts on the stable locomotion of a simple bipedal robot,” Robotica 40(9), 33403354 (2022).10.1017/S0263574722000212CrossRefGoogle Scholar
Ada, S. E., Ugur, E. and Akin, H. L., “Generalization in transfer learning: Robust control of robot locomotion,” Robotica 40(11), 38113836 (2022).10.1017/S0263574722000625CrossRefGoogle Scholar
Li, Z., Peng, X. B., Abbeel, P., Levine, S., Berseth, G. and Sreenath, K., “Reinforcement learning for versatile, dynamic, and robust bipedal locomotion control,” Int. J. Rob. Res. 44(5), 840888 (2025).10.1177/02783649241285161CrossRefGoogle Scholar
Pratt, J., Carff, J., Drakunov, S. and Goswami, A., “Capture Point: A Step Toward Humanoid Push Recovery,” 2006 6th IEEE-RAS International Conference on Humanoid Robots (IEEE , 2006) pp. 200207.10.1109/ICHR.2006.321385CrossRefGoogle Scholar
Koolen, T., De Boer, T., Rebula, J., Goswami, A. and Pratt, J., “Capturability-based analysis and control of legged locomotion, part 1: Theory and application to three simple gait models,” Int. J. Rob. Res. 31(9), 10941113 (2012).10.1177/0278364912452673CrossRefGoogle Scholar
Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S. and Righetti, L., “Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid,” Auton. Rob. 40(3), 473491 (2016).10.1007/s10514-015-9476-6CrossRefGoogle Scholar
Collins, S., Ruina, A., Tedrake, R. and Wisse, M., “Efficient bipedal robots based on passive-dynamic walkers,” Science 307(5712), 10821085 (2005).10.1126/science.1107799CrossRefGoogle ScholarPubMed
Hobbelen, D. G. and Wisse, M., Limit cycle walking (2007).Google Scholar
Westervelt, E. R., Grizzle, J. W. and Koditschek, D. E., “Hybrid zero dynamics of planar biped walkers,” IEEE Trans. Autom. Control 48(1), 4256 (2003).10.1109/TAC.2002.806653CrossRefGoogle Scholar
Grizzle, J. W., Abba, G. and Plestan, F., “Asymptotically stable walking for biped robots: Analysis via systems with impulse effects,” IEEE Trans. Autom. Control 46(1), 5164 (2001).10.1109/9.898695CrossRefGoogle Scholar
Grizzle, J. W., Hurst, J., Morris, B., Park, H.-W. and Sreenath, K., “Mabel, A New Robotic Bipedal Walker and Runner,” 2009 American Control Conference (IEEE, 2009) pp. 20302036.10.1109/ACC.2009.5160550CrossRefGoogle Scholar
Gong, Y., Hartley, R., Da, X., Hereid, A., Harib, O., Huang, J.-K. and Grizzle, J., “Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway,” American Control Conference (ACC) (2019) pp. 45594566.Google Scholar
Gong, Y. and Grizzle, J. W., “Zero dynamics, pendulum models, and angular momentum in feedback control of bipedal locomotion,” J. Dyn. Syst. Meas. Control 144(12), 121006 (2022).10.1115/1.4055770CrossRefGoogle Scholar
Shimizu, T., Nakaura, S. and Sampei, M., “The Control of a Bipedal Running Robot Based on Output Zeroing Considered Rotation of the Ankle Joint,” Proceedings of the 45th IEEE Conference on Decision and Control (CDC) (2006) pp. 64566461.Google Scholar
Nakamura, K., Nakaura, S. and Sampei, M., “Control of Bipedal Running by the Angular-Momentum-based Synchronization Structure,” IEEE International Conference on Robotics and Automation (ICRA) (2010) pp. 33103315.Google Scholar
Hereid, A., Cousineau, E. A., Hubicki, C. M. and Ames, A. D., “3D Dynamic Walking with Underactuated Humanoid Robots: A Direct Collocation Framework for Optimizing Hybrid Zero Dynamics,” IEEE International Conference on Robotics and Automation (ICRA) (2016) pp. 14471454.Google Scholar
Hubicki, C., Grimes, J., Jones, M., Renjewski, D., Spröwitz, A., Abate, A. and Hurst, J., “Atrias: Design and validation of a tether-free 3d-capable spring-mass bipedal robot,” Int. J. Rob. Res. 35(12), 14971521 (2016).10.1177/0278364916648388CrossRefGoogle Scholar
Takano, R., Chang, J. and Yamakita, M., “Periodic Trajectory Planning and Robust Output Zeroing Control for Underactuated Bipedal Robots with Predicted Disturbances,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019) pp. 14151420.Google Scholar
Reher, J. and Ames, A. D., “Inverse Dynamics Control of Compliant Hybrid Zero Dynamic Walking,” 2021 IEEE International Conference on Robotics and Automation (ICRA) ( 2021) pp. 20402047.10.1109/ICRA48506.2021.9560906CrossRefGoogle Scholar
Luo, Y., Römer, U. J., Dyck, A., Zirkel, M., Zentner, L. and Fidlin, A., “Hybrid zero dynamics control for bipedal walking with a non-instantaneous double support phase,” arXiv preprint arXiv:2303.05165 (2023).Google Scholar
Ghansah, A. B., Kim, J., Li, K. and Ames, A. D., “Dynamic Walking on Highly Underactuated Point Foot Humanoids: Closing the Loop Between HZD and HLIP,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2024) pp. 1268612693.Google Scholar
McGeer, T., “Passive dynamic walking,” Int. J. Rob. Res. 9(2), 6282 (1990).10.1177/027836499000900206CrossRefGoogle Scholar
Hanazawa, Y., Nishinami, H. and Sagara, S., “Energy-efficient limit cycle walking in disturbance based on nonlinear model predictive control,” Robotica 42(2), 435456 (2024).10.1017/S0263574723001522CrossRefGoogle Scholar
Ohtsuka, T., “A continuation/gmres method for fast computation of nonlinear receding horizon control,” Automatica 40(4), 563574 (2004).10.1016/j.automatica.2003.11.005CrossRefGoogle Scholar
Deng, H. and Ohtsuka, T., “A parallel newton-type method for nonlinear model predictive control,” Automatica 109, 111, 108560 (2019).10.1016/j.automatica.2019.108560CrossRefGoogle Scholar
Onodera, Y. and Yamakita, M., “An Extension of Nonlinear Receding Horizon Control for Switched System with State Jump,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2005) pp. 984989.Google Scholar
Murayama, A. and Yamakita, M., “Speed Control of Vehicles with Variable Valve Lift Engine by Nonlinear MPC,” IEEE ICCAS-SICE (2009) pp. 41284133.Google Scholar
Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J. H. and Morris, B., “Feedback control of dynamic bipedal robot locomotion” (2018).10.1201/9781420053739CrossRefGoogle Scholar
Lu, P., “Optimal predictive control of continuous nonlinear systems,” Int. J. Control 62(3), 633649 (1995).10.1080/00207179508921561CrossRefGoogle Scholar
Supplementary material: File

Hanazawa et al. supplementary material

Hanazawa et al. supplementary material
Download Hanazawa et al. supplementary material(File)
File 37.9 MB