Hostname: page-component-6bb9c88b65-vpjdr Total loading time: 0 Render date: 2025-07-26T12:47:18.034Z Has data issue: false hasContentIssue false

Fuzzy logic control strategy for improved traction and maneuverability in modular articulated robots

Published online by Cambridge University Press:  21 July 2025

Simone Pantanetti*
Affiliation:
Department of Industrial Engineering and Mathematical Sciences, Polytechnic University of Marche, Ancona, Italy
Andrea Botta
Affiliation:
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
Giacomo Palmieri
Affiliation:
Department of Industrial Engineering and Mathematical Sciences, Polytechnic University of Marche, Ancona, Italy
Giuseppe Quaglia
Affiliation:
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
*
Corresponding author: Simone Pantanetti; Email: s.pantanetti@pm.univpm.it

Abstract

This paper presents the design, control strategy, and preliminary testing of Epi.Q, a modular unmanned vehicle (UGV) tailored for challenging environments, including exploration and surveillance tasks. To manage the complexities of the articulated structure, including lateral slip and the risk of jackknifing, a fuzzy logic-based traction control system was implemented. To improve traction stability by modulating power distribution between modules, the system optimally controls steering and traction. Subsequently, the paper introduces the fuzzy control system and presents preliminary validation experiments, including hill-climbing, obstacle navigation, steering, and realignment tests. Preliminary results indicate that the proposed fuzzy control strategy significantly improves traction and maneuverability even on steep inclines and uneven surfaces. These findings highlight the potential for fuzzy logic control to improve UGV performance.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Li, B., Zhang, Y., Acarma, T., Kong, Q. and Zhang, Y., “Trajectory Planning for a Tractor With Multiple Trailers in Extremely Narrow Environments: A Unified Approach,” In: 2019 International Conference on Robotics and Automation (ICRA), IEEE (2019) pp. 85578562.10.1109/ICRA.2019.8793955CrossRefGoogle Scholar
González-Cantos, A. and Ollero, A., “Backing-up maneuvers of autonomous tractor-trailer vehicles using the qualitative theory of nonlinear dynamical systems,” Int. J. Robot. Res. 28(1), 4965 (2009).10.1177/0278364908097588CrossRefGoogle Scholar
Carabin, G., Gasparetto, A., Mazzetto, F. and Vidoni, R., “Design, implementation and validation of a stability model for articulated autonomous robotic systems,” Robot. Auton. Syst. 83, 158168 (2016).10.1016/j.robot.2016.05.008CrossRefGoogle Scholar
Zhu, Y. and Kan, J., “Prediction of the lateral stability of a forestry chassis with an articulated body and fitted with luffing wheel-legs,” Biosyst. Eng. 224, 143160 (2022).10.1016/j.biosystemseng.2022.10.007CrossRefGoogle Scholar
Quaglia, G. and Nisi, M., “Design and Construction of a New Version of the epi. q ugvfor Monitoring and Surveillance Tasks,” In: ASME International Mechanical Engineering Congress and Exposition. vol. 57397 (American Society of Mechanical Engineers, 2015) pp. V04AT04A001.Google Scholar
Botta, A. and Cavallone, P., “Robotics Applied to Precision Agriculture: The Sustainable Agri.q Rover Case Study,” In: Quaglia, G., Gasparetto, A., Petuya, V. and Carbone, G., eds. Proceedings of I4SDG Workshop 2021, volume 108 of Mechanisms and Machine Science, (Cham: Springer International Publishing, 2022) pp. 4150.10.1007/978-3-030-87383-7_5CrossRefGoogle Scholar
Cavallone, P., Visconte, C., Carbonari, L., Botta, A. and Quaglia, G., “Design of the Mobile Robot Agri.q,” In: ROMANSY 23 - Robot Design, Dynamics and Control (Venture, G., Solis, J., Takeda, Y. and Konno, A., eds.) volume 601 of CISM International Centre for Mechanical Sciences (Springer International Publishing, Cham, 2021) pp. 288296.10.1007/978-3-030-58380-4_35CrossRefGoogle Scholar
Botta, A., Cavallone, P., Baglieri, L., Colucci, G., Tagliavini, L. and Quaglia, G., “In depth analysis of power balance, handling, and the traction subsystem of an articulated skid-steering robot for sustainable agricultural monitoring,” SN Appl. Sci. 5(4), 103 (2023).10.1007/s42452-023-05321-yCrossRefGoogle Scholar
Botta, A., Cavallone, P., Tagliavini, L., Carbonari, L., Visconte, C. and Quaglia, G., “An estimator for the kinematic behaviour of a mobile robot subject to large lateral slip,” Appl. Sci. 11(4), 110 (2021). Publisher: Multidisciplinary Digital Publishing Institute10.3390/app11041594CrossRefGoogle Scholar
Carbonari, L., Botta, A., Cavallone, P., Tagliavini, L. and Quaglia, G., “Data-driven analysis of locomotion for a class of articulated mobile robots,”J. Mech. Robot. 13(5), 050905 (2021). Publisher: American Society of Mechanical Engineers10.1115/1.4051018CrossRefGoogle Scholar
Botta, A., Cavallone, P., Carbonari, L., Tagliavini, L. and Quaglia, G., “Modelling and Experimental Validation of Articulated Mobile Robots With Hybrid Locomotion System,” In: Mechanisms and Machine Science, vol. 91 (Springer, Cham, (2021) pp. 758767.Google Scholar
Zhang, H., Liang, H., Tao, X., Ding, Y., Yu, B. and Bai, R., “Driving force distribution and control for maneuverability and stability of a 6WD skid-steering EUGV with independent drive motors,” Appl. Sci. 11(3), 961 (2021).10.3390/app11030961CrossRefGoogle Scholar
Liang, H., Ma, Y., Zhi, J., Li, Y. and Peng, Y., “Optimized Torque Allocation Strategy on Multi-wheel Vehicles,” In: 2017 9th International Conference on Modelling, Identification and Control (ICMIC), IEEE (2017) pp. 815820.10.1109/ICMIC.2017.8321567CrossRefGoogle Scholar
Prasad, R. and Ma, Y., “Hierarchical control coordination strategy of six wheeled independent drive (6WID) skid steering vehicle,” IFAC-PapersOnLine 52(5), 6065 (2019).10.1016/j.ifacol.2019.09.010CrossRefGoogle Scholar
Gao, Y., Cao, D. and Shen, Y., “Path-following control by dynamic virtual terrain field for articulated steer vehicles,” Vehicle Syst. Dyn. 58(10), 15281552 (2020).10.1080/00423114.2019.1648837CrossRefGoogle Scholar
Tota, A., Velardocchia, M., Rota, E. and Novara, A., Steering behavior of an articulated amphibious all-terrain tracked vehicle, Technical report, SAE Technical Paper, 1e11 (2020).10.4271/2020-01-0996CrossRefGoogle Scholar
Markdahl, J., “Automatic traction control for articulated off-road vehicles,” IEEE Trans. Control Syst. Technol. 31(2), 945952 (2022).10.1109/TCST.2022.3203194CrossRefGoogle Scholar
Zhang, D., Yang, C., Zhang, W. and Cheng, Y., “An adaptive tracking control method for the all-wheel-driving and active-steering articulated vehicle with n-units,” Proc. Inst. Mech. Eng., Part D: J. Automob. Eng. 236(9), 21202137 (2022).10.1177/09544070211050630CrossRefGoogle Scholar
Liu, Z., Yue, M., Guo, L. and Zhang, Y., “Trajectory planning and robust tracking control for a class of active articulated tractor-trailer vehicle with on-axle structure,” Eur. J. Control 54, 8798 (2020).10.1016/j.ejcon.2019.12.003CrossRefGoogle Scholar
Zhang, Y., Khajepour, A., Hashemi, E., Qin, Y. and Huang, Y., “Reconfigurable model predictive control for articulated vehicle stability with experimental validation,” IEEE Trans. Transp. Electrif. 6(1), 308317 (2020).10.1109/TTE.2020.2972374CrossRefGoogle Scholar
Xu, T., Ji, X., Liu, Y. and Liu, Y., “Differential drive based yaw stabilization using MPC for distributed-drive articulated heavy vehicle,” IEEE Access 8, 104052104062 (2020).10.1109/ACCESS.2020.2998510CrossRefGoogle Scholar
Zhou, Y. and Chung, K.-W., “Path tracking control of a tractor-trailer wheeled robot kinematics with a passive steering angle,” Appl. Math. Model. 109, 341357 (2022).10.1016/j.apm.2022.04.025CrossRefGoogle Scholar
Chudakov, O. I., Gorelov, V. A. and Gartfelder, V. A., “A steering control system for the tractor–semi-trailer combination vehicle with the electromechanical transmission,” J. Phys.: Conf. Ser. 2061, 012134 (2021).Google Scholar
Lee, C. C., “Fuzzy logic in control systems: Fuzzy logic controller. I,” IEEE Trans. Systems, Man, and Cybernetics 20(2), 404418 (1990).10.1109/21.52551CrossRefGoogle Scholar
Tzafestas, S. G., “Fuzzy systems and fuzzy expert control: An overview,” Knowl. Eng. Rev. 9(3), 229268 (1994).10.1017/S0269888900006949CrossRefGoogle Scholar
Geering, H. P., Introduction to fuzzy control. Medium: application/pdf, Online-Datei Publisher, 3rd ed. (ETH Zurich, Zurich, 1998). Available at: http://hdl.handle.net/20.500.11850/148627.Google Scholar
Nguyen, A.-T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R. and Sugeno, M., “Fuzzy control systems: Past, present and future,” IEEE Comput. Intell. Mag. 14(1), 5668 (2019).10.1109/MCI.2018.2881644CrossRefGoogle Scholar
Zimmermann, H.-J., “Fuzzy set theory,” WIREs Comput. Stat. 2(3), 317332 (2010).10.1002/wics.82CrossRefGoogle Scholar
Mamdani, E. H. and Assilian, S., “An experiment in linguistic synthesis with a fuzzy logic controller,” Int. J. Man-Mach. Stud. 7(1), 113 (1975).10.1016/S0020-7373(75)80002-2CrossRefGoogle Scholar
Lee, C. C., “Fuzzy logic in control systems: Fuzzy logic controller. ii,” IEEE Trans. Systems, Man, and Cybernetics 20(2), 419435 (1990).10.1109/21.52552CrossRefGoogle Scholar
Sugeno, M., Industrial Applications of Fuzzy Control (Elsevier Science Inc, 1985).Google Scholar
Jang, J.-S. R., Sun, C.-T. and Mizutani, E., “Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [book review],” IEEE Trans. Automat. Contr. 42(10), 14821484 (1997).10.1109/TAC.1997.633847CrossRefGoogle Scholar
Blej, M. and Azizi, M., “Comparison of mamdani-type and sugeno-type fuzzy inference systems for fuzzy real time scheduling,” Int. J. Appl. Eng. Res. 11(22), 1107111075 (2016).Google Scholar
Pantanetti, S., Robot Epi.Q overcoming obstacles, (2024). Accessed: 2024-11-05. Available at: https://youtu.be/_vIQHE0cJHY.Google Scholar
Pantanetti, S., Testing the Epi.Q robot, (2024). Accessed: 2024-11-05. Available at: https://youtu.be/bA7L1G9Fqmc.Google Scholar