Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T11:49:46.550Z Has data issue: false hasContentIssue false

Dynamic planning navigation strategy for mobile terrestrial robots

Published online by Cambridge University Press:  04 July 2014

Átila V. F. M. de Oliveira
Affiliation:
Department of Computer Engineering and Automation, Center of Technology, Federal University of Rio Grande do Norte - UFRN, Natal, Brazil
Marcelo A. C. Fernandes*
Affiliation:
Department of Computer Engineering and Automation, Center of Technology, Federal University of Rio Grande do Norte - UFRN, Natal, Brazil
*
*Corresponding author. E-mail: mfernandes@dca.ufrn.br

Summary

This paper proposes a new dynamic planning navigation strategy for use with mobile terrestrial robots. The strategy was applied to situations in which the environment and obstacles were unknown. After each displacement event, the robot replanned its route using a control algorithm that minimized the distance to the target and maximized the distance between the obstacles. Using a spatial localization sensor and a set of distance sensors, the proposed navigation strategy was able to dynamically plan optimum routes that were free of collisions. Simulations performed using different types of environment demonstrated that the technique offers a high degree of flexibility and robustness, and validated its potential use in real applications involving mobile terrestrial robots.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Siegwart, R., Nourbakhsh, I. and Scaramuzza, D., “Introduction to Autonomous Mobile Robots,” In: Intelligent Robotics and Autonomous Agents (Arkin, R. C., ed.) (MIT Press, Cambridge MA, 2011) pp. 369423.Google Scholar
2.Martinez-Soto, R., Castillo, O., Aguilar, L. and Baruch, I., “Bio-inspired Optimization of Fuzzy Logic Controllers for Autonomous Mobile Robots,” In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), Berkeley, CA, USA (Aug. 6–8, 2012) pp. 16, IEEE. http://dx.doi.org/10.1109/NAFIPS.2012.6291053 doi:10.1109/NAFIPS.2012.6291053.Google Scholar
3.Juang, C.-F. and Chang, Y.-C., “Evolutionary-group-based particle-swarm-optimized fuzzy controller with application to mobile-robot navigation in unknown environments,” IEEE Trans. Fuzzy Syst. 19 (2), 379392 (2011). http://dx.doi.org/10.1109/TFUZZ.2011.2104364 doi:10.1109/TFUZZ.2011.2104364.CrossRefGoogle Scholar
4.Ismail AL-Taharwa, A. S. and Al-Weshah, M., “A mobile robot path planning using genetic algorithm in static environment,” J. Comput. Sci. 4 (4), 341344 (2008). http://dx.doi.org/10.3844/jcssp.2008.341.344 doi:10.3844/jcssp.2008.341.344.CrossRefGoogle Scholar
5.Yun, S. C., Parasuraman, S. and Ganapathy, V., “Dynamic Path Planning Algorithm in Mobile Robot Navigation,” Proceedings of the 2011 IEEE Symposium on Industrial Electronics and Applications (ISIEA), Langkawi, Malaysia (Sep. 25–28, 2011) pp. 364369. http://dx.doi.org/10.1109/ISIEA.2011.6108732 doi:10.1109/ISIEA.2011.6108732.Google Scholar
6.Shi, P. and Cui, Y., “Dynamic Path Planning for Mobile Robot Based on Genetic Algorithm in Unknown Environment,” Proceedings of the Control and Decision Conference (CCDC), 2010 Chinese (May 26–28, 2010) pp. 4325–4329. http://dx.doi.org/10.1109/CCDC.2010.5498349 doi:10.1109/CCDC.2010.5498349.CrossRefGoogle Scholar
7.Shamsinejad, P., Saraee, M. and Sheikholeslam, F., “A New Path Planner for Autonomous Mobile Robots Based on Genetic Algorithm,” In: Proceedings of the 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 8 (2010) pp. 115–120. http://dx.doi.org/10.1109/ICCSIT.2010.5563666 doi:10.1109/ICCSIT.2010.5563666.CrossRefGoogle Scholar
8.Tuncer, A. and Yildirim, M., “Dynamic path planning of mobile robots with improved genetic algorithm,” Comput. Electr. Eng. 38 (6), 15641572 (2012). http://dx.doi.org/10.1016/j.compeleceng.2012.06.016 doi:10.1016/j.compeleceng.2012.06.016.CrossRefGoogle Scholar
9.Cosío, F. A. and Neda, M. P. C., “Autonomous robot navigation using adaptive potential fields,” Math. Comput. Modelling 40 (9–10), 11411156 (2004). http://dx.doi.org/10.1016/j.mcm.2004.05.001 doi:10.1016/j.mcm.2004.05.001.CrossRefGoogle Scholar
10.Yongnian, Z., Lifang, Z. and Yongping, L., “An Improved Genetic Algorithm for Mobile Robotic Path Planning,” Proceedings of the 24th Control and Decision Conference (CCDC), 2012 Chinese (2012) pp. 3255–3260. http://dx.doi.org/10.1109/CCDC.2012.6244515 doi:10.1109/CCDC.2012.6244515.CrossRefGoogle Scholar
11.Zhang, L., Min, H., Wei, H. and Huang, H., “Global Path Planning for Mobile Robot Based on a*; Algorithm and Genetic Algorithm,” Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO) (2012) pp. 1795–1799. http://dx.doi.org/10.1109/ROBIO.2012.6491228 doi:10.1109/ROBIO.2012.6491228.CrossRefGoogle Scholar
12.Samadi, M. and Othman, M. F., “Global Path Planning for Autonomous Mobile Robot using Genetic Algorithm,” Proceedings of the 2013 International Conference on Signal-Image Technology Internet-Based Systems (SITIS) (2013) pp. 726–730. http://dx.doi.org/10.1109/SITIS.2013.118 doi:10.1109/SITIS.2013.118.CrossRefGoogle Scholar
13.Chaari, I., Koubaa, A., Bennaceur, H., Trigui, S. and Al-Shalfan, K., “Smartpath: A Hybrid Aco-ga Algorithm for Robot Path Planning,” Proceedings of the 2012 IEEE Congress on Evolutionary Computation (CEC) (2012) pp. 1–8. http://dx.doi.org/10.1109/CEC.2012.6256142 doi:10.1109/CEC.2012.6256142.CrossRefGoogle Scholar
14.Esposito, J. M., Barton, O. and Kohler, J., “Matlab toolbox for the irobot create,” available at: www.usna.edu/Users/weapsys/esposito/roomba.matlab/ (2011) (accessed June 5, 2013), Online.Google Scholar