Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T15:28:23.455Z Has data issue: false hasContentIssue false

A Distributed Approach for the Implementation of Geometric Reconstruction-Based Visual SLAM Systems

Published online by Cambridge University Press:  21 July 2020

Otacílio de Araújo Ramos Neto
Affiliation:
Embedded and Distributed Computing Laboratory (LACED), Instituto Federal de Educação Ciência e Tecnologia da Paraíba, Guarabira, Brazil
Abel Cavalcante Lima Filho
Affiliation:
Department of Mechanical Engineering, Universidade Federal da Paraíba, João Pessoa, Brazil
Tiago P. Nascimento*
Affiliation:
Lab of Systems Engineering and Robotics (LaSER), Department of Computer Systems, Universidade Federal da Paraíba, João Pessoa, Brazil
*
*Corresponding author. E-mail: tiagopn@ci.ufpb.br

Summary

Visual simultaneous localization and mapping (VSLAM) is a relevant solution for vehicle localization and mapping environments. However, it is computationally expensive because it demands large computational effort, making it a non-real-time solution. The VSLAM systems that employ geometric reconstructions are based on the parallel processing paradigm developed in the Parallel Tracking and Mapping (PTAM) algorithm. This type of system was created for processors that have exactly two cores. The various SLAM methods based on the PTAM were also not designed to scale to all the cores of modern processors nor to function as a distributed system. Therefore, we propose a modification to the pipeline for the execution of well-known VSLAM systems so that they can be scaled to all available processors during execution, thereby increasing their performance in terms of processing time. We explain the principles behind this modification via a study of the threads in the SLAM systems based on PTAM. We validate our results with experiments describing the behavior of the original ORB-SLAM system and the modified version.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dhiman, N. K., Deodhare, D. and Khemani, D., “Where am i? Creating spatial awareness in unmanned ground robots using slam: A survey,” Sadhana 40(5), 13851433 (2015). http://dx.doi.org/10.1007/s12046-015-0402-6 CrossRefGoogle Scholar
Taketomi, T., Uchiyama, H. and Ikeda, S., “Visual slam algorithms: A survey from 2010 to 2016,” IPSJ Trans. Comput. Vis. Appl. 9(1), 16 (2017). https://doi.org/10.1186/s41074-017-0027-2 CrossRefGoogle Scholar
Chudoba, J., Kulich, M., Saska, M., Báča, T. and Přeučil, L., “Exploration and mapping technique suited for visual-features based localization of mavs,” J. Intell. Robot. Syst. 84(1), 351369 (2016).CrossRefGoogle Scholar
Yang, N., Wang, R., Gao, X. and Cremers, D., “Challenges in monocular visual odometry: Photometric calibration, motion bias, and rolling shutter effect,” IEEE Robot. Autom. Lett. 3(4), 28782885 (2018). https://doi.org/10.1109/LRA.2018.2846813 CrossRefGoogle Scholar
Nister, D., “An efficient solution to the five-point relative pose problem,” IEEE Trans. Patt. Anal. Mach. Intell. 26(6), 756770 (2004). https://doi.org/10.1109/TPAMI.2004.17 CrossRefGoogle ScholarPubMed
Hartley, R. I., “In defense of the eight-point algorithm,” IEEE Trans. Patt. Anal. Mach. Intell. 19(6), 580593 (1997).CrossRefGoogle Scholar
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K. and Burgard, W., “G2o: A General Framework for Graph Optimization,” In: 2011 IEEE International Conference on Robotics and Automation, Shanghai (2011) pp. 36073613. https://doi.org/10.1109/ICRA.2011.5979949 CrossRefGoogle Scholar
Guclu, O. and Can, A. B., Fast and effective loop closure detection to improve slam performance. J. Intell. Robot. Syst. 93, 495517 (2017). https://doi.org/10.1007/s10846-017-0718-z CrossRefGoogle Scholar
Klein, G. and Murray, D., “Parallel Tracking and Mapping for Small AR Workspaces,” In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara (2007) pp. 225234. https://doi.org/10.1109/ISMAR.2007.4538852 CrossRefGoogle Scholar
Mur-Artal, R. and Tardós, J. D., “ORB-SLAM2: An open-source SLAM system for monocular, stereo and RGB-D cameras,” IEEE Trans. Robot. 33(5), 12551262 (2017). https://doi.org/10.1109/TRO.2017.2705103 CrossRefGoogle Scholar
Strasdat, H., Davison, A. J., Montiel, J. M. M. and Konolige, K., “Double Window Optimisation for Constant Time Visual Slam,” In: 2011 International Conference on Computer Vision, Barcelona (2011) pp. 23522359. https://doi.org/10.1109/ICCV.2011.6126517 CrossRefGoogle Scholar
Pire, T., Fischer, T., Castro, G., De Cristóforis, P., Civera, J. and Jacobo Berlles, J., S-PTAM: Stereo parallel tracking and mapping. Robot. Auton. Syst. (RAS) 93, 2742 (2017). https://doi.org/10.1016/j.robot.2017.03.019 CrossRefGoogle Scholar
Rublee, E., Rabaud, V., Konolige, K. and Bradski, G., “Orb: An Efficient Alternative to Sift or Surf,” In: 2011 International Conference on Computer Vision (2011) pp. 25642571. https://doi.org/10.1109/ICCV.2011.6126544 CrossRefGoogle Scholar
Li, Z., Jia, H., Zhang, Y., Liu, S., Li, S., Wang, X. and Zhang, H., “Efficient parallel optimizations of a high-performance sift on gpus,” J. Parallel Distr. Comput. 124, 7891 (2019). http://www.sciencedirect.com/science/article/pii/S0743731518307858 CrossRefGoogle Scholar
Mur-Artal, R., Montiel, J. M. M. and Tardós, J. D., “Orb-slam: A versatile and accurate monocular slam system,” IEEE Trans. Robot. 31(5), 11471163 (2015). https://doi.org/10.1109/TRO.2015.2463671 CrossRefGoogle Scholar
Fernández-Madrigal, J. A. and Claraco, J. L. B., Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods, 1st edn. (IGI Global, Hershey, PA, USA, 2012).Google Scholar
Prince, S. : Computer Vision: Models Learning and Inference. (Cambridge University Press, Cambridge, United Kingdom, 2012).CrossRefGoogle Scholar
Fischler, M. A. and Bolles, R. C., “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24(6), 381395 (1981). http://doi.acm.org/10.1145/358669.358692 CrossRefGoogle Scholar
Hartley, R. I and Zisserman, A., Multiple View Geometry in Computer Vision, 2nd edn. (Cambridge University Press, Cambridge, United Kingdom, 2004), ISBN: 0521540518.CrossRefGoogle Scholar
Geiger, A., Lenz, P. and Urtasun, R., “Are We Ready for Autonomous Driving? The Kitti Vision Benchmark Suite,” In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI (2012) pp. 33543361. http://doi.org/10.1109/CVPR.2012.6248074 CrossRefGoogle Scholar
KITTI: The Kitti Vision Benchmark Suite. http://www.cvlibs.net/datasets/kitti/ (2016). (Accessed 2016 July 22).Google Scholar
Ma, Y., Soatto, S., Kosecka, J. and Sastry, S., An Invitation to 3-D Vision (Springer, New York, NY, 2004).CrossRefGoogle Scholar
Snir, M., Otto, S., Huss-Lederman, S., Walker, D. and Dongarra, J., MPI-The Complete Reference, vol. 1, The MPI Core, 2nd. (revised) edn. (MIT Press, Cambridge, MA, USA, 1998).Google Scholar
Tong, Z., Pakin, S., Lang, M. and Yuan, X., “Fast classification of mpi applications using lamport’s logical clocks,” J. Parallel Distr. Comput. 120, 7788 (2018). http://www.sciencedirect.com/science/article/pii/S074373151830340X CrossRefGoogle Scholar
Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L. and Woodall, T. S., “Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation,” In: Recent Advances in Parallel Virtual Machine and Message Passing Interface. EuroPVM/MPI 2004. Lecture Notes in Computer Science (D. Kranzlmüller, P. Kacsuk and J. Dongarra, eds.), vol 3241 (Springer, Berlin, Heidelberg, 2004). https://doi.org/10.1007/978-3-540-30218-6_19 CrossRefGoogle Scholar