Hostname: page-component-7f64f4797f-tldsr Total loading time: 0.001 Render date: 2025-11-04T13:20:25.400Z Has data issue: false hasContentIssue false

Design and testing of SensHB.Q: a cost-effective force-sensitive interface to drive mobile motorized systems

Published online by Cambridge University Press:  03 November 2025

Luigi Tagliavini*
Affiliation:
DIMEAS – Department of Mechanical Engineering, Politecnico di Torino , Torino, Italy
Andrea Botta
Affiliation:
DIMEAS – Department of Mechanical Engineering, Politecnico di Torino , Torino, Italy
Giovanni Colucci
Affiliation:
DIMEAS – Department of Mechanical Engineering, Politecnico di Torino , Torino, Italy
Lorenzo Baglieri
Affiliation:
DIMEAS – Department of Mechanical Engineering, Politecnico di Torino , Torino, Italy
Simone Duretto
Affiliation:
DIMEAS – Department of Mechanical Engineering, Politecnico di Torino , Torino, Italy
Francesco Amodio
Affiliation:
DIMEAS – Department of Mechanical Engineering, Politecnico di Torino , Torino, Italy
Lorenzo Toccaceli
Affiliation:
DIMEAS – Department of Mechanical Engineering, Politecnico di Torino , Torino, Italy
Giuseppe Quaglia
Affiliation:
DIMEAS – Department of Mechanical Engineering, Politecnico di Torino , Torino, Italy
*
Corresponding author: Luigi Tagliavini; Email: luigi.tagliavini@polito.it

Abstract

This study focuses on the development and testing of SensHB.Q, a force-sensitive interface for driving omnidirectional motorized systems such as wheelchairs, precision agriculture rovers, hospital beds, mobile service robots, and heavy-duty platforms. As manual driving is still fundamental in transportation vehicles, the design of intuitive driving interfaces has a major impact on the user experience. Force-sensitive interfaces measure the forces and torques applied by the driver on a sensitive area of the device and then convert these force inputs into commands for the omnidirectional system. In this paper, the design of the SensHB.Q force-sensitive interface and the transfer function for converting force inputs into speed commands are presented. Experimental tests are then conducted to validate the effectiveness of this interface in controlling two omnidirectional motorized systems: MoviWE.Q electrically powered wheelchair and Agrimaro.Q rover for precision agriculture in greenhouses.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alwan, M., Ledoux, A., Wasson, G., Sheth, P. and Huang, C., “Basic walker-assisted gait characteristics derived from forces and moments exerted on the walker’s handles: results on normal subjects,” Med. Eng. Phys. 29(3), 380389 (2007).10.1016/j.medengphy.2006.06.001CrossRefGoogle ScholarPubMed
Andaluz, V. H., Ortiz, J. S., Chicaiza, F. A., Varela, J., Espinosa, E. G. and Canseco, P., “Adaptive Control of the Human-Wheelchair System through Brain Signals,” In: Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, August 22–24, 2016, Proceedings, Part II 9 2016 (Springer, 2016) pp. 223234.10.1007/978-3-319-43518-3_22CrossRefGoogle Scholar
Berjón, R., Mateos, M., Barriuso, A., Muriel, I. and Villarrubia, G., “Head Tracking System for Wheelchair Movement Control,” In: Highlights in Practical Applications of Agents and Multiagent Systems: 9th International Conference on Practical Applications of Agents and Multiagent Systems (Springer, 2011) pp. 307315.10.1007/978-3-642-19917-2_37CrossRefGoogle Scholar
Blanchard, F. W., Thompson, J. J., Wrobleski, D. J. and Smith, M. S., “Patient support apparatus,” (2013). US Patent 8,413,271.Google Scholar
Botta, A., Cavallone, P., Baglieri, L., Colucci, G., Tagliavini, L. and Quaglia, G., “A review of robots, perception, and tasks in precision agriculture,” Appl. Mech. 3(3), 830854 (2022).10.3390/applmech3030049CrossRefGoogle Scholar
Cao, L., Li, J., Ji, H. and Jiang, C., “A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control,” J. Neurosci. Methods 229, 3343 (2014).10.1016/j.jneumeth.2014.03.011CrossRefGoogle ScholarPubMed
Chen, Y., Zhu, H. and Ozkan, “, H. Development of a variable-rate sprayer with laser scanning sensor to synchronize spray outputs to tree structures,” In: Transactions of the ASABE 55(3), 773781 (2012).10.13031/2013.41509CrossRefGoogle Scholar
Colucci, G., Botta, A., Tagliavini, L., Baglieri, L., Duretto, S. and Quaglia, G., “Agrimaro. q, a Service Robot for Precision Agriculture in Greenhouses,” In: The International Conference of IFToMM ITALY (Springer, 2024) pp. 292299.10.1007/978-3-031-64553-2_34CrossRefGoogle Scholar
Cortes, U., Martínez-Velasco, A., Barrué, C., Martin, E., Campana, F., Annicchiarico, R. and Caltagirone, C., “Towards an Intelligent Service to Elders Mobility using the I-Walker,” In: AAAI Fall Symposium: AI in Eldercare: New Solutions to Old Problems (2008) pp. 3238.Google Scholar
Corti, M., Gallina, P. M., Cavalli, D., Ortuani, B., Cabassi, G., Cola, G., Vigoni, A., Degano, L. and Bregaglio, S., “Evaluation of in-season management zones from high-resolution soil and plant sensors,” Agronomy 10(8), 1124 (2020).10.3390/agronomy10081124CrossRefGoogle Scholar
Ghorbel, A., Amor, N. B. and Jallouli, M., “A survey on different human–machine interactions used for controlling an electric wheelchair,” Procedia Comput. Sci. 159, 398407 (2019).10.1016/j.procs.2019.09.194CrossRefGoogle Scholar
Gongal, A., Silwal, A., Amatya, S., Karkee, M., Zhang, Q. and Lewis, K., “Apple crop-load estimation with over-the-row machine vision system,” Comput. Electr. Agric. 120, 2635 (2016).10.1016/j.compag.2015.10.022CrossRefGoogle Scholar
Katevas, N. I., Sgouros, N. M., Tzafestas, S. G., Papakonstantinou, G., Beattie, P., Bishop, J. M., Tsanakas, P. and Koutsouris, D., “The autonomous mobile robot senario: A sensor aided intelligent navigation system for powered wheelchairs,” IEEE Robot. Autom. Mag. 4(4), 6070 (2002).10.1109/100.637806CrossRefGoogle Scholar
Kim, J., Park, H., Bruce, J., Sutton, E., Rowles, D., Pucci, D., Holbrook, J., Minocha, J., Nardone, B., West, D. and Laumann, A., “The tongue enables computer and wheelchair control for people with spinal cord injury,” Sci. Transl. Med. 5(213) (2013).CrossRefGoogle Scholar
Kundu, A. S., Mazumder, O., Lenka, P. K. and Bhaumik, S., “Omnidirectional assistive wheelchair: Design and control with isometric myoelectric based intention classification,” Procedia Comput. Sci. 105, 6874 (2017).10.1016/j.procs.2017.01.200CrossRefGoogle Scholar
Levine, S. P., Bell, D. A., Jaros, L. A., Simpson, R. C., Koren, Y. and Borenstein, J., “The navchair assistive wheelchair navigation system,” IEEE Trans. Rehabil. Eng. 7(4), 443451 (1999).CrossRefGoogle ScholarPubMed
Lin, J.-S. and Cheng-Hung, S., “An SSVEP-based BCI system and its applications,” Int. J. Adv. Comput. Sci. Appl. 5(10) (2014).10.14569/IJACSA.2014.051009CrossRefGoogle Scholar
Maes, W. H. and Steppe, K., “Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture,” Trends Plant Sci. 24(2), 152164 (2019).10.1016/j.tplants.2018.11.007CrossRefGoogle Scholar
Martins, M., Santos, C., Seabra, E., Frizera, A. and Ceres, R., “Design, Implementation and Testing of a New User Interface for a Smart Walker,” In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) (2014) pp. 217222.Google Scholar
Martins, M. M., Frizera-Neto, A., Santos, C. P. and Ruíz, R. C., “Smart Walker Control through the Inference of the User’s Command Intentions,” In: ICINCO (1) (2012) pp. 458463.Google Scholar
Mohamed, S. A., Haghbayan, M.-H., Westerlund, T., Heikkonen, J., Tenhunen, H. and Plosila, J., “A survey on odometry for autonomous navigation systems,” IEEE Access 7, 9746697486 (2019).10.1109/ACCESS.2019.2929133CrossRefGoogle Scholar
Mougharbel, I., El-Hajj, R., Ghamlouch, H. and Monacelli, E., “Comparative Study on Different Adaptation Approaches Concerning a Sip and Puff Controller for a Powered Wheelchair,” In: 2013 Science and Information Conference (IEEE, (2013) pp. 597603.Google Scholar
Murakami, W., “Robot operating apparatus provided with handles for operating robot,” (2019). US Patent 10,300,608.Google Scholar
Nguyen, T. T., Kayacan, E., De Baedemaeker, J. and Saeys, W., “Task and motion planning for apple harvesting robot,” IFAC Proc. 46(18), 247252 (2013).CrossRefGoogle Scholar
Niijima, S., Sasaki, Y. and Mizoguchi, H., “Real-time autonomous navigation of an electric wheelchair in large-scale urban area with 3d map,” Adv. Robot. 33(19), 10061018 (2019).10.1080/01691864.2019.1642240CrossRefGoogle Scholar
U. N. D. of Economic and S. Affairs, Disability and Development Report 2018 (United Nations, 2019).Google Scholar
U. N. D. of Economic and S. Affairs, World Population Prospects (United Nations, 2024).Google Scholar
Ofori, E., Griffin, T. and Yeager, E., “Duration analyses of precision agriculture technology adoption: What’s influencing farmers’ time-to-adoption decisions?Agric. Fin. Rev. 80(5), 647664 (2020).10.1108/AFR-11-2019-0121CrossRefGoogle Scholar
W. H. Organization, Health Equity for Persons with Disabilities: Guide for Action (World Health Organization, 2024).Google Scholar
Permobil, Chin cup, handles. https://www.permobil.com/en-us/products/accessories/handles/chin-cup. Last accessed 06 June 2025Google Scholar
Permobil, Large ball handle. https://www.permobil.com/en-us/products?category=Accessoryle. Last accessed 06 June 2025.Google Scholar
Permobil, Softball, handles. https://www.permobil.com/en-us/products/accessories/handles/softball. Last accessed 06 June 2025.Google Scholar
Permobil, Stick joystick handle. https://buildmywheelchair.com/stick-joystick-handle/. Last accessed 06 June 2025.Google Scholar
Plesnick, S., Repice, D. and Loughnane, P., “Eye-Controlled Wheelchair,” In: 2014 IEEE Canada International Humanitarian Technology Conference-(IHTC) (IEEE, 2014) pp. 14.Google Scholar
Podobnik, J., Rejc, J., Slajpah, S., Munih, M. and Mihelj, M., “All-terrain wheelchair: Increasing personal mobility with a powered wheel-track hybrid wheelchair,” IEEE Robot. Autom. Mag. 24(4), 2636 (2017).10.1109/MRA.2017.2746182CrossRefGoogle Scholar
Quaglia, G., Franco, W. and Oderio, R., “Wheelchair. q, a motorized wheelchair with stair climbing ability,” Mech. Mach. Theory 46(11), 16011609 (2011).10.1016/j.mechmachtheory.2011.07.005CrossRefGoogle Scholar
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M. and Rieseberg, L. H., “Trends in global agricultural land use: Implications for environmental health and food security,” Annu. Rev. Plant Biol. 69(1), 789815 (2018).10.1146/annurev-arplant-042817-040256CrossRefGoogle ScholarPubMed
Schor, N., Bechar, A., Ignat, T., Dombrovsky, A., Elad, Y. and Berman, S., “Robotic disease detection in greenhouses: Combined detection of powdery mildew and tomato spotted wilt virus,IEEE Robot. Autom. Lett. 1(1), 354360 (2016).10.1109/LRA.2016.2518214CrossRefGoogle Scholar
Shi, F., Cao, Q., Leng, C. and Tan, H., “Based on Force Sensing-Controlled Human–Machine Interaction System for Walking Assistant Robot,” In: 2010, 8th World Congress on Intelligent Control and Automation (IEEE, 2010) pp. 65286533.10.1109/WCICA.2010.5554167CrossRefGoogle Scholar
Slowmoose, Universal conversion and replacements parts power wheelchair joystick. https://www.fruugo.it/unviersal-conversion-and-replacemetns-parts-power-wheelchair-joystick/p-51259325-102858071?language=en. Last accessed 06 June 2025.Google Scholar
Tagliavini, L., Botta, A., Colucci, G., Baglieri, L., Duretto, S. and Quaglia, G., “Human–Machine Driving Interface for Omnidirectional Robots and Wheelchairs,” In: The International Conference of IFToMM ITALY (Springer, 2024) pp. 257264.10.1007/978-3-031-64553-2_30CrossRefGoogle Scholar
Tagliavini, L. and Quaglia, G., “On the Design of Moviwe. q: An Omnidirectional Electric-Powered Wheelchair for Indoor Mobility,” In: IFToMM World Congress on Mechanism and Machine Science (Springer, 2023) pp. 311321.Google Scholar
Taher, F. B., Amor, N. B., Jallouli, M., Hammouda, A. and Dghim, O., “A Collaborative and Voice Configured Electric Powered Wheelchair Control System Based on EEG and Head Movement,” In: 3rd International Conference on Automation (Control Engineering and Computer Science, 2016).Google Scholar
Thakur, B. and Kulshrestha, K. , “Eye Controlled Electric Wheelchair,” In: 2014 IEEE International Conference on Computational Intelligence and Computing Research (IEEE, 2014) pp. 16.10.1109/ICCIC.2014.7238451CrossRefGoogle Scholar
Tonin, L., Perdikis, S., Kuzu, T. D., Pardo, J., Orset, B., Lee, K., Aach, M., Schildhauer, T. A., Martínez-Olivera, R. and d. R. Millán, J., “Learning to control a BMI-driven wheelchair for people with severe tetraplegia,” Iscience 25(12) (2022).10.1016/j.isci.2022.105418CrossRefGoogle Scholar
Trujillo-León, A., Bachta, W., Castellanos-Ramos, J. and Vidal-Verdú, F., “Assistive handlebar based on tactile sensors: control inputs and human factors,Sensors 18(8), 2471 (2018).10.3390/s18082471CrossRefGoogle ScholarPubMed
Walter, M. R., Hemachandra, S., Homberg, B., Tellex, S. and Teller, S., “A framework for learning semantic maps from grounded natural language descriptions,Int. J. Robot. Res. 33(9), 11671190 (2014).10.1177/0278364914537359CrossRefGoogle Scholar
Wang, C., Matveev, A. S., Savkin, A. V., Nguyen, T. N. and Nguyen, H. T., “A Collision Avoidance Strategy for Safe Autonomous Navigation of an Intelligent Electric-Powered Wheelchair in Dynamic Uncertain Environments with Moving Obstacles,” In: 2013 European Control Conference (ECC) (IEEE, 2013) pp. 43824387.CrossRefGoogle Scholar