Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T17:42:44.669Z Has data issue: false hasContentIssue false

Design and experiment of a pneumatic self-repairing soft actuator

Published online by Cambridge University Press:  14 February 2023

Zhaoyu Liu
Affiliation:
Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
Yuxuan Wang
Affiliation:
Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
Shaoke Yuan
Affiliation:
Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
Yanqiong Fei*
Affiliation:
Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen, China
*
*Corresponding author. E-mail: fyq_sjtu@163.com

Abstract

This paper presents a study on the design and modeling of a novel pneumatic self-repairing soft actuator. The self-repairing soft actuator is composed of driving element, heating element, and repairing element. The driving element completes the deformation of the self-repairing soft actuator. The heating element and the repairing element complete the self-repairing function of the self-repairing soft actuator. A model used to optimize the structure is established, and the structure of the self-repairing soft actuator is determined through finite element analysis and experiment. The self-repairing time model of the soft actuator is established. The influences of different factors on the self-repairing effect and the self-repairing time are analyzed. The self-repairing scheme of the soft actuator is determined. Experiments show that the shortest time for the self-repairing soft actuator to complete the self-repairing process is 83 min. When the self-repairing soft actuator works normally, the bending angle can reach 129.8° and the bending force can reach 24.96 N. After repairing, the bending angle can reach 108.2°, and the bending force can reach 21.85 N. The repaired soft actuator can complete normal locomotion.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, F. and Wang, M. Y., “Design optimization of soft robots: A review of the state of the art,” IEEE Robot. Autom. Mag. 27(4), 2743 (2020).CrossRefGoogle Scholar
Guo, J., Elgeneidy, K., Xiang, C., Lohse, N., Justham, L. and Rossiter, J., “Soft pneumatic grippers embedded with stretchable electroadhesion,” Smart Mater. Struct. 27(5), 055006 (2018).CrossRefGoogle Scholar
Liu, Z., Wang, Y., Wang, J., Fei, Y. and Du, Q., “An obstacle-avoiding and stiffness-tunable modular bionic soft robot,” Robotica 40(8), 2651–2665 (2022).CrossRefGoogle Scholar
Zhou, D., Zuo, W., Tang, X., Deng, J. and Liu, Y., “A multi-motion bionic soft hexapod robot driven by self-sensing controlled twisted artificial muscles,” Bioinspir. Biomim. 16(4), 045003 (2021).CrossRefGoogle ScholarPubMed
Yang, X., Tan, R., Lu, H. and Shen, Y., “Starfish inspired milli soft robot with omnidirectional adaptive locomotion ability,” IEEE Robot. Autom. Lett. 6(2), 33253332 (2021).CrossRefGoogle Scholar
Abdulrab, H. Q., Nordin, I. N. A. M., Razif, M. R. M. and Faudzi, A. A. M., “Snake-like soft robot using 2-chambers actuator,” J. Electr. Electron. Eng. 17(1), 3440 (2018).Google Scholar
Liu, Z., Wang, Y. and Fei, Y., “Soft Pipe-Climbing Robot for Vertical Creeping Locomotion,” 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), IEEE (2021, November) pp. 316321.CrossRefGoogle Scholar
Yang, Y., Zhang, M., Li, D. and Shen, Y., “Graphene-based light-driven soft robot with snake-inspired concertina and serpentine locomotion,” Adv. Mater. Technol. 4(1), 1800366 (2019).CrossRefGoogle Scholar
Jin, H., Dong, E., Xu, M., Liu, C., Alici, G. and Jie, Y., “Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots,” Smart Mater. Struct. 25(8), 085026 (2016).CrossRefGoogle Scholar
Niu, D., Jiang, W., Ye, G., Lei, B., Luo, F., Liu, H. and Lu, B., “Photothermally triggered soft robot with adaptive local deformations and versatile bending modes,” Smart Mater. Struct. 28(2), 02LT01 (2019).CrossRefGoogle Scholar
Lee, C., Kim, M., Kim, Y. J., Hong, N., Ryu, S., Kim, H. J. and Kim, S., “Soft robot review,” Int. J. Control. Autom. Syst. 15(1), 315 (2017).CrossRefGoogle Scholar
Yin, C., Wei, F., Fu, S., Zhai, Z., Ge, Z., Yao, L., Jiang, M. and Liu, M., “Visible light-driven jellyfish-like miniature swimming soft robot,” ACS Appl. Mater. Interfaces 13(39), 4714747154 (2021).CrossRefGoogle ScholarPubMed
Wu, Q., Yang, X., Wu, Y., Zhou, Z., Wang, J., Zhang, B., Luo, Y., Chepinskiy, S. A. and Zhilenkov, A. A., “A novel underwater bipedal walking soft robot bio-inspired by the coconut octopus,” Bioinspir. Biomim. 16(4), 046007 (2021).CrossRefGoogle ScholarPubMed
Lamping, F., Seis, R. and de Payrebrune, K. M., “On the motion of a snake-like soft robot,” PAMM 20(1), e202000037 (2021).CrossRefGoogle Scholar
Katzschmann, R. K., Marchese, A. D. and Rus, D., “Hydraulic Autonomous Soft Robotic Fish for 3D Swimming,” In: Experimental Robotics, (Springer, Cham, 2016) pp. 405420.CrossRefGoogle Scholar
Li, Y., Ren, T., Li, Y., Liu, Q. and Chen, Y., “Untethered-bioinspired quadrupedal robot based on double-chamber pre-charged pneumatic soft actuators with highly flexible trunk,” Soft Robot. 8(1), 97108 (2021).CrossRefGoogle ScholarPubMed
Gu, G., Zou, J., Zhao, R., Zhao, X. and Zhu, X., “Soft wall-climbing robots,” Sci. Robot. 3(25), eaat2874 (2018).CrossRefGoogle ScholarPubMed
Ewoldt, R. H., “Extremely soft: Design with rheologically complex fluids,” Soft Robot. 1(1), 1220 (2014).CrossRefGoogle Scholar
Gao, T., Li, D., Jin, G., Liang, H. and Yang, R., “Discrete Element Simulation of Mechanics Properties of Single Edge Notched Hydrogel-A New Material for Soft Robot and Sensor,” 2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA), IEEE (2018) pp. 96101.Google Scholar
Jiang, F., Zhang, Z., Wang, X., Cheng, G., Zhang, Z. and Ding, J., “Pneumatically actuated self-healing bionic crawling soft robot,” J. Intell. Robot. Syst. 100(2), 445454 (2020).CrossRefGoogle Scholar
Bekas, D. G., Tsirka, K., Baltzis, D. and Paipetis, A. S., “Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques,” Compos. Part B Eng. 87, 92119 (2016).CrossRefGoogle Scholar
Trask, R. S., Bond, I. P. and Semprimoschnig, C. O. A., “Self-Healing of Composite Structures in a Space Environment,” ICCM15-15th International Conference on Composite Materials Proceedings, Durban (2006, September).CrossRefGoogle Scholar
Cuvellier, A., Torre-Muruzabal, A., Van Assche, G., De Clerck, K. and Rahier, H., “Selection of healing agents for a vascular self-healing application,” Polym. Test. 62, 302310 (2017).CrossRefGoogle Scholar
Ullah, H., Qureshi, K. S., Khan, U., Zaffar, M., Yang, Y. J., Rabat, N. E., Khan, M. I., Saqib, S., Mukhtar, A., Ullah, S., Mubashir, M., Bokhari, A., Chai, W. S., Chew, K. W., Show, P. L., “Self-healing epoxy coating synthesis by embedment of metal 2-methyl imidazole and acetylacetonate complexes with microcapsules,” Chemosphere 285, 131492 (2021).CrossRefGoogle ScholarPubMed
Herbst, F., Döhler, D., Michael, P. and Binder, W. H. M., “Rapid Commun. 3/2013,” Macromol. Rapid Commun. 34(3), 197197 (2013).CrossRefGoogle Scholar
van Gemert, G. M., Peeters, J. W., Söntjens, S. H., Janssen, H. M. and Bosman, A. W., “Self-healing supramolecular polymers in action,” Macromol. Chem. Phys. 213(2), 234242 (2012).CrossRefGoogle Scholar
Zhang, H., Yang, S., Yang, Z., Wang, D., Han, J., Li, C., Zhu, C., Xu, J. and Zhao, N., “An extremely stretchable and self-healable supramolecular polymer network,” ACS Appl. Mater. Interfaces 13(3), 44994507 (2021).CrossRefGoogle ScholarPubMed
Dahlke, J., Zechel, S., Hager, M. D. and Schubert, U. S., “How to design a self-healing polymer: General concepts of dynamic covalent bonds and their application for intrinsic healable materials,” Adv. Mater. Interfaces 5(17), 1800051 (2018).CrossRefGoogle Scholar
Yuan, N., Xu, L., Wang, H., Fu, Y., Zhang, Z., Liu, L., Wang, C., Zhao, J. and Rong, J., “Dual physically cross-linked double network hydrogels with high mechanical strength, fatigue resistance, notch-insensitivity, and self-healing properties,” ACS Appl. Mater. Interfaces 8(49), 3403434044 (2016).CrossRefGoogle ScholarPubMed
Huynh, T. P. and Haick, H., “Self-healing, fully functional, and multiparametric flexible sensing platform,” Adv. Mater. 28(1), 138143 (2016).CrossRefGoogle ScholarPubMed
Jia, X. Y., Mei, J. F., Lai, J. C., Li, C. H. and You, X. Z., “A highly stretchable polymer that can be thermally healed at mild temperature,” Macromol. Rapid Commun. 37(12), 952956 (2016).CrossRefGoogle ScholarPubMed
Liu, J., Tan, C. S. Y., Yu, Z., Li, N., Abell, C. and Scherman, O. A., “Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing,” Adv. Mater. 29(22), 1605325 (2017).CrossRefGoogle ScholarPubMed
Joey, Z. G., Calderón, A. A. and Pérez-Arancibia, N. O., “An Earthworm-Inspired Soft Crawling Robot Controlled by Friction,” 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE (2017, December) pp. 834841.Google Scholar
Li, Y., Chen, S., Wu, M. and Sun, J., “All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings,” Adv. Mater. 26(20), 33443348 (2014).CrossRefGoogle ScholarPubMed
Laschi, C., Mazzolai, B. and Cianchetti, M., “Soft robotics: technologies and systems pushing the boundaries of robot abilities,” Sci. Robot. 1(1), eaah3690 (2016).CrossRefGoogle ScholarPubMed
Garcia, S. J., “Effect of polymer architecture on the intrinsic self-healing character of polymers,” Eur. Polym. J. 53, 118125 (2014).CrossRefGoogle Scholar
Terryn, S., Brancart, J., Lefeber, D., Van Assche, G. and Vanderborght, B., “Self-healing soft pneumatic robots,” Sci. Robot. 2(9), eaan4268 (2017).CrossRefGoogle ScholarPubMed
Xu, W. M., Rong, M. Z. and Zhang, M. Q., “Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer,” J. Mater. Chem. A 4(27), 1068310690 (2016).CrossRefGoogle Scholar
Fu, R., Guan, Y., Xiao, C., Fan, L., Wang, Z., Li, Y., Li, Y., Yu, P., Tu, L., Tan, G., Zhai, J., Zhou, L., Ning, C., “Tough and highly efficient underwater self-repairing hydrogels for soft electronics,” Small Methods 6(5), 2101513 (2022).CrossRefGoogle ScholarPubMed
Tabrizian, S. K., Sahraeeazartamar, F., Brancart, J., Roels, E., Ferrentino, P., Legrand, J., Assche, G. V., Vanderborght, B. and Terryn, S., “A healable resistive heater as a stimuli-providing system in self-healing soft robots,” IEEE Robot. Autom. Lett. 7(2), 45744581 (2022).CrossRefGoogle Scholar
Pillsbury, T. E., Wereley, N. M. and Guan, Q., “Comparison of contractile and extensile pneumatic artificial muscles,” Smart Mater. Struct. 26(9), 095034 (2017).CrossRefGoogle Scholar
Sedal, A., Wineman, A., Gillespie, R. B. and Remy, C. D., “Comparison and experimental validation of predictive models for soft, fiber-reinforced actuators,” Int. J. Robot. Res. 40(1), 119135 (2021).CrossRefGoogle Scholar
Chen, Z., Zou, A., Qin, Z., Han, X., Li, T. and Liu, S., “Modeling and fabrication of soft actuators based on fiber-reinforced elastomeric enclosures,” Actuators 10(6), 127 (2021).CrossRefGoogle Scholar
Darmohammadi, A., Naeimi, H. R. and Agheli, M., “Effect of Fiber Angle Variation on Bending Behavior of Semi-Cylindrical Fiber-Reinforced Soft Actuator,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, Vol. 51814, (2018, August) p. V05BT07A054.Google Scholar
Wang, M. Y., Wang, X. and Guo, D., “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng. 192(1-2), 227246 (2003).CrossRefGoogle Scholar
Yeoh, O. H., “Some forms of the strain energy function for rubber,” Rubber Chem. Technol. 66(5), 754771 (1993).CrossRefGoogle Scholar
Miyake, S., Nagahama, S. and Sugano, S., “Development of self-healing linear actuator unit using thermoplastic resin,” Adv. Robot. 33(23), 12351247 (2019).CrossRefGoogle Scholar
Niu, P., Bao, N., Zhao, H., Yan, S., Liu, B., Wu, Y. and Li, H., “Room-temperature self-healing elastomer-graphene composite conducting wires with superior strength for stretchable electronics,” Compos. Sci. Technol. 219, 109261 (2022).CrossRefGoogle Scholar
Wang, Z., Zhang, K., Liu, Y., Zhao, H., Gao, C. and Wu, Y., “Modified MXene-doped conductive organosilicon elastomer with high-stretchable, toughness, and self-healable for strain sensors,” Compos. Struct. 282, 115071 (2022).CrossRefGoogle Scholar
Zhang, Y., Li, M., Qin, B., Chen, L., Liu, Y., Zhang, X. and Wang, C., “Highly transparent, underwater self-healing, and ionic conductive elastomer based on multivalent ion-dipole interactions,” Chem. Mater. 32(15), 63106317 (2020).CrossRefGoogle Scholar
Cao, Y., Tan, Y. J., Li, S., Lee, W. W., Guo, H., Cai, Y., Wang, C. and Tee, B. C.-K., “Self-healing electronic skins for aquatic environments,” Nat. Electron. 2(2), 7582 (2019).CrossRefGoogle Scholar