Hostname: page-component-7857688df4-74lm6 Total loading time: 0 Render date: 2025-11-17T13:46:54.932Z Has data issue: false hasContentIssue false

Design and analysis of a novel shoulder exoskeleton with mismatch compensation capability

Published online by Cambridge University Press:  14 November 2025

Lianzheng Niu
Affiliation:
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
Sheng Guo*
Affiliation:
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
Xinhua Yang
Affiliation:
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
Haibo Qu
Affiliation:
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, China
Majun Song
Affiliation:
Hangzhou Innovation Institute, Beihang University, Hangzhou, 311115, China
Xiangyang Wang
Affiliation:
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
*
Corresponding author: Sheng Guo; Email: shguo@bjtu.edu.cn

Abstract

Most exoskeletons are designed with the shoulder joint’s instantaneous center of rotation (ICR) in mind as a fixed joint, often also known as the center of the shoulder joint. In fact, shoulder ICR changes during shoulder abduction–adduction and flexion–extension. Abduction–adduction causes the ICR to move in the frontal plane, which is caused by the joint movement of the shoulder joint, including depressed elevation and horizontal translation, while the flexion–extension movement of the sagittal plane produces the shoulder extension movement. If the change in shoulder ICoR movements is not compensated for in the exoskeleton design, they can create discomfort and pain for the robot’s wearer. Although conventional exoskeletons typically treat the shoulder joint as a three degree of freedom spherical joint, this study incorporates a more sophisticated understanding of shoulder kinematics. The developed scapulohumeral rhythm compensation mechanism successfully compensates for shoulder joint motion, with simulation results confirming kinematics that closely match ergonomic shoulder movement patterns. First, the complex kinematics of the shoulder joint are analyzed. To meet the demand for mismatch compensation, a shoulder exoskeleton based on a winding mechanism is designed. A mismatch compensation model is established, and theoretical analysis and simulation verify that the designed shoulder exoskeleton has a mismatch compensation function. While solving the mismatch problem, the human–machine coupling model is established through OpenSim software. The simulation results show that the designed exoskeleton has a good assisting effect from the perspective of muscle force generation and shoulder torque.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Niu, L. Z., Guo, S., Song, M. J., Wu, Y. F. and Qu, H. B., “Design and analysis of a novel shoulder exoskeleton based on a parallel mechanism,” Chin. J. Mech. Eng. 36(2), 261278 (2023).10.1186/s10033-023-00883-9CrossRefGoogle Scholar
Danaish, Mr., Han, L., Xu, G., Baig, M. A., Dong, G. C., Gao, Y. and Xu, Z., “Design, simulation and experimental evaluation of a shoulder abduction/adduction exoskeleton for rehabilitation and partial assistance in older adults,” Industrial Robot: The international journal of robotics research and application, (2025). doi: 10.1108/IR-11-2024-0520.CrossRefGoogle Scholar
Jorgensen, M. J., Hakansson, N. A. and Desai, J., “Influence of different passive shoulder exoskeletons on shoulder and torso muscle activation during simulated horizontal and vertical aircraft squeeze riveting tasks,” Appl. Ergon. 104, 103822 (2022).10.1016/j.apergo.2022.103822CrossRefGoogle ScholarPubMed
Castro, M. N., Rasmussen, J., Andersen, M. S. and Bai, S., “A compact 3-DOF shoulder mechanism constructed with scissors linkages for exoskeleton applications,” Mech. Mach. Theory 132, 264278 (2019).10.1016/j.mechmachtheory.2018.11.007CrossRefGoogle Scholar
De Bock, S., Ampe, T., Rossini, M., Tassignon, B., Lefeber, D., Rodriguez-Guerrero, C., Roelands, B., Geeroms, J., Meeusen, R. and De Pauw, K., “Passive shoulder exoskeleton support partially mitigates fatigue-induced effects in overhead work,” Appl. Ergon. 106, 103903 (2023).10.1016/j.apergo.2022.103903CrossRefGoogle ScholarPubMed
Fayad, F., Hoffmann, G., Hanneton, S., Yazbeck, C., Lefevre-colau, M. M., Poiraudeau, S., Revel, M. and Roby-Brami, A., “3-D scapular kinematics during arm elevation: Effect of motion velocity,” Clin. Biomech. 21(9), 932941 (2006).10.1016/j.clinbiomech.2006.04.015CrossRefGoogle ScholarPubMed
Haarman, C. J. W., Hekman, E. E. G., Haalboom, M. F. H., Van Der Kooij, H. and Rietman, J. S., “A new shoulder orthosis to dynamically support glenohumeral subluxation,” IEEE Trans. Biomed. Eng. 68(4), 11421153 (2021).10.1109/TBME.2020.3021521CrossRefGoogle ScholarPubMed
Beil, J. and Asfour, T., “New Mechanism for a 3 DOF Exoskeleton Hip Joint with Five Revolute and Two Prismatic Joints,” In: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (2016) pp. 787792.Google Scholar
Cempini, M., De Rossi, S. M. M., Lenzi, T., Vitiello, N. and Carrozza, M. C., “Self-alignment mechanisms for assistive wearable robots: A kinetostatic compatibility method,” IEEE Trans. Robot. 29(1), 236250 (2013).10.1109/TRO.2012.2226381CrossRefGoogle Scholar
Esquenazi, A., Talaty, M., Packel, A. and Saulino, M., “The reWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury,” Am. J. Phys. Med Rehab. 91(11), 911921 (2012).10.1097/PHM.0b013e318269d9a3CrossRefGoogle ScholarPubMed
Schiele, A. and Van Der Helm, F. C. T., “Kinematic design to improve ergonomics in human machine interaction,” IEEE Trans. Neur. Sys. Rehab. Eng. 14(4), 456469 (2006).10.1109/TNSRE.2006.881565CrossRefGoogle ScholarPubMed
Stienen, A. H. A., Hekman, E. E. G., Prange, G. B., Jannink, M. J. A., Aalsma, A. M. M., Van Der Helm, F. C. T. and Van Der Kooij, H., “Dampace: Design of an exoskeleton for force-coordination training in upper-extremity rehabilitation,” J. Med. Devices 3(3), 031003 (2009).10.1115/1.3191727CrossRefGoogle Scholar
Naf, M. B., Koopman, A. S., Baltrusch, S., Rodriguez-Guerrero, C., Vanderborght, B. and Lefeber, D., “Passive back support exoskeleton improves range of motion using flexible beams,” Front. Robot. Ai 5, 7272 (2018).10.3389/frobt.2018.00072CrossRefGoogle ScholarPubMed
Phan, P. T., Thai, M. T., Hoang, T. T., Lovell, N. H. and Do, T. N., “HFAM: Soft hydraulic filament artificial muscles for flexible robotic applications,” IEEE Access 8, 226637226652 (2020).10.1109/ACCESS.2020.3046163CrossRefGoogle Scholar
Chen, W. Y., Li, G. Y., Li, N., Wang, W. X., Yu, P., Wang, R. Q., Xue, X. J., Zhao, X. G. and Liu, L. Q., “Soft exoskeleton with fully actuated thumb movements for grasping assistance,” IEEE Trans. Robot. 38(4), 21942207 (2022).10.1109/TRO.2022.3148909CrossRefGoogle Scholar
Zhou, Y. M., Hohimer, C. J., Young, H. T., McCann, C. M., Pont-Esteban, D., Civici, U. S., Jin, Y., Murphy, P., Wagner, D., Cole, T., Phipps, N., Cho, H., Bertacchi, F., Pignataro, I., Proietti, T. and Walsh, C. J., “A portable inflatable soft wearable robot to assist the shoulder during industrial work,” Sci. Robot. 9(91), eadi2377 (2024).10.1126/scirobotics.adi2377CrossRefGoogle ScholarPubMed
Lee, Y., Kim, Y. J., Lee, J., Lee, M., Choi, B., Kim, J., Park, Y. J. and Choi, J., “Biomechanical design of a novel flexible exoskeleton for lower extremities,” IEEE-ASME Trans. Mechatron. 22(5), 20582069 (2017).10.1109/TMECH.2017.2718999CrossRefGoogle Scholar
Machekposhti, D. F., Tolou, N. and Herder, J. L., “A review on compliant joints and rigid-body constant velocity universal joints toward the design of compliant homokinetic couplings,” J. Mech. Des. 137(3), 112 (2015).Google Scholar
Hunt, J., Lee, H. and Artemiadis, P., “A novel shoulder exoskeleton robot using parallel actuation and a passive slip interface,” J. Mech. Robot. 9(1), 011012 (2017).10.1115/1.4035087CrossRefGoogle Scholar
Hsieh, H. C., Chen, D. F., Chien, L. and Lan, C. C., “Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder rehabilitation,” IEEE-ASME Trans. Mechatron. 22(5), 20342045 (2017).10.1109/TMECH.2017.2717874CrossRefGoogle Scholar
Kim, T., Jeong, M. and Kong, K., “Bioinspired knee joint of a lower-limb exoskeleton for misalignment reduction,” IEEE-ASME Trans. Mechatron. 27(3), 12231232 (2022).10.1109/TMECH.2021.3099815CrossRefGoogle Scholar
Cestari, M., Sanz-Merodio, D., Arevalo, J. C. and Garcia, E., “An adjustable compliant joint for lower-limb exoskeletons,” IEEE-ASME Trans. Mechatron. 20(2), 889898 (2015).10.1109/TMECH.2014.2324036CrossRefGoogle Scholar
Vatan, H. M. F., Nefti-Meziani, S., Davis, S., Saffari, Z. and El-Hussieny, H., “A review: A comprehensive review of soft and rigid wearable rehabilitation and assistive devices with a focus on the shoulder joint,” J. Intell. Robot. Syst. 102(9), 124 (2021).Google Scholar
Yang, L., Zhang, F. and Fu, Y., “A cable-driven elbow exoskeleton with variable stiffness actuator for upper limb rehabilitation,” Robotica 43(2), 662679 (2025).10.1017/S026357472400211XCrossRefGoogle Scholar
Zhang, H., Li, Z., Zhang, Q., Zhou, T., Chen, W. and Xiong, C., “Matching the hip variable stiffness feature by an unpowered hip exoskeleton reduces the metabolic cost of human walking,” IEEE Trans. Neur. Sys. Reh. Eng. 33, 23932403 (2025).10.1109/TNSRE.2025.3578774CrossRefGoogle Scholar
Zhu, Y., Balser, F., Shen, M. and Bai, S. P., “Design and evaluation of a novel passive shoulder exoskeleton based on a variable stiffness mechanism torque generator for industrial applications,” Robotics 13(8), 120 (2024).10.3390/robotics13080120CrossRefGoogle Scholar
Zhou, Y. F., Shao, Y. X., Shi, D., Feng, Y. G., Ding, X. L. and Zhang, W. X., “Design and preliminary validation of a compatible lower limb exoskeleton with variable stiffness actuation,” Robotica 43(5), 16751690 (2025).10.1017/S0263574725000451CrossRefGoogle Scholar
Lenarcic, J. and Stanisic, M., “A humanoid shoulder complex and the humeral pointing kinematics,” IEEE Trans. Robotic. Auto. 19(3), 499506 (2003).10.1109/TRA.2003.810578CrossRefGoogle Scholar
Seth, A., Matias, R., Veloso, Aónio P., Delp, S. L. and Ren, L., “A biomechanical model of the scapulothoracic joint to accurately capture scapular kinematics during shoulder movements,” Plos One 11(1), 0141028 (2016).10.1371/journal.pone.0141028CrossRefGoogle ScholarPubMed
Have, A. V., Rossini, M., Rodriguez-Guerrero, C., Van Rossom, S. and Jonkers, I., “The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height,” Appl. Ergon. 103, 103800 (2022).10.1016/j.apergo.2022.103800CrossRefGoogle ScholarPubMed
Nef, T. and Riener, R., “Shoulder Actuation Mechanisms for Arm Rehabilitation Exoskeletons,” In: Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (2008) pp. 862868.Google Scholar
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E. and Thelen, D. G., “OpenSim: Open-source software to create and analyze dynamic simulations of movement,” IEEE Trans. Biomed. Eng. 54(11), 19401950 (2007).10.1109/TBME.2007.901024CrossRefGoogle ScholarPubMed
Park, D., Toxiri, S., Chini, G., Natali, C. D., Caldwell, D. G. and Ortiz, J., “Shoulder-sideWINDER (Shoulder-side wearable INDustrial ergonomic robot): Design and evaluation of shoulder wearable robot with mechanisms to compensate for joint misalignment,” IEEE Trans. Robot. 38(3), 14601471 (2022).10.1109/TRO.2021.3125854CrossRefGoogle Scholar
Seth, A., Dong, M. L., Matias, R. and Delp, S., “Muscle contributions to upper-extremity movement and work from a musculoskeletal model of the human shoulder,” Front. Neurobot. 13, 90 (2019).10.3389/fnbot.2019.00090CrossRefGoogle ScholarPubMed